TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .
C. 2e4 .
D. −e2 .
Câu 2. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
C. .
D. 9.
A. 6.
B. .
2
2
Câu 3. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.
C. 8.
D. 12.
Câu 4. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Ba mặt.
Câu 5. Tìm m để hàm số y =
A. 45.
B.
cos n + sin n
Câu 6. Tính lim
n2 + 1
A. 0.
B.
3
x −1
Câu 7. Tính lim
x→1 x − 1
A. 0.
B.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
26.
C. 34.
D. Bốn mặt.
D. 67.
1.
C. −∞.
D. +∞.
3.
C. +∞.
D. −∞.
Câu 8. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
C. 5.
D. 8.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 9. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 1.
B. 2.
C. −1.
D. .
2
log 2x
Câu 10. [3-1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
.
C. y0 = 3
.
D. y0 =
.
.
B. y0 = 3
A. y0 =
3
x
x ln 10
2x ln 10
2x3 ln 10
Câu 11. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 12.√Thể tích của tứ diện đều √
cạnh bằng a
√
√
3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
4
2
6
12
Câu 13. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 8, 16, 32.
C. 2, 4, 8.
D. 6, 12, 24.
Câu 14. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. −7, 2.
C. 0, 8.
D. 72.
Trang 1/10 Mã đề 1
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
a
2a
A.
.
B. .
C. .
D.
.
3
4
3
3
√
Câu 16. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. 3.
C. −3.
D. .
3
3
Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√
√ phẳng vng góc với 3(ABCD).
3
3
√
a 3
a 3
a 2
A.
.
B.
.
C.
.
D. a3 3.
4
2
2
2
x − 12x + 35
Câu 18. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. .
C. − .
D. −∞.
5
5
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 19. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
2
.
B. 2a 2.
C.
.
D.
.
A.
24
12
24
Câu 15. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 20. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Ba cạnh.
D. Năm cạnh.
Câu 21. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
D. {4; 3}.
C. {5; 3}.
Câu 22. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 27cm3 .
C. 72cm3 .
D. 46cm3 .
Câu 23. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 9.
D. 0.
Câu 24. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 25. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.
Câu 26. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 10.
C. f 0 (0) = ln 10.
ln 10
D. f 0 (0) = 1.
Câu 27. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 4.
D. 0, 3.
Câu 28. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1637
1728
1079
A.
.
B.
.
C.
.
D.
.
68
4913
4913
4913
Trang 2/10 Mã đề 1
log 2x
là
Câu 29. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
3
3
x
2x ln 10
2x ln 10
Câu 30. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. y0 =
1 − 2 ln 2x
.
x3 ln 10
D. Khối tứ diện đều.
Câu 31. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. 4.
C. .
D. .
A. .
2
4
8
3
2
Câu 32. Cho hàm số y = x + 3x . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 33. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
8a 3
4a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
x−1
Câu 34. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
√
√ có độ dài bằng
A. 2 2.
B. 2.
C. 2 3.
D. 6.
Câu 35. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.
C. 10.
2
2n − 1
Câu 36. Tính lim 6
3n + n4
2
B. 1.
C. 0.
A. .
3
Câu 37. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (1; −3).
D. (0; −2).
Câu 38. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. (−∞; 6, 5).
D. [6, 5; +∞).
D. 30.
D. 2.
Câu 39.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 40. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. +∞.
B. −∞.
C. 0.
un
bằng
vn
D. 1.
Câu 41.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
√
3
3
3
3
A.
.
B. .
C.
.
D.
.
12
4
2
4
Câu 42. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 10.
D. ln 12.
Trang 3/10 Mã đề 1
Câu 43. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 9 mặt.
D. 3 mặt.
[ = 60◦ , S O
Câu 44. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng
√
a 57
a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
17
19
19
Câu 45. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
A. 8 3.
.
C.
.
D. 6 3.
B.
3
3
Câu 46. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 47.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
B. 27.
C. 8.
D. 9.
A. 3 3.
Câu 48.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.
A.
Z
B.
xα dx =
Z
xα+1
+ C, C là hằng số.
α+1
1
dx = ln |x| + C, C là hằng số.
x
√3
4
Câu 49. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
5
B. a 3 .
C. a 3 .
D. a 3 .
A. a 8 .
C.
dx = x + C, C là hằng số.
D.
√
Câu 50. [12215d] Tìm m để phương trình 4 x+
3
9
B. 0 ≤ m ≤ .
A. 0 ≤ m ≤ .
4
4
1−x2
√
− 3m + 4 = 0 có nghiệm
3
C. 0 < m ≤ .
D. m ≥ 0.
4
− 4.2 x+
1−x2
Câu 51. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 2.
C. 3.
D. 1.
Câu 52. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. Khơng tồn tại.
C. −3.
D. −5.
Câu 53. Tính lim
x→2
A. 3.
x+2
bằng?
x
B. 1.
C. 0.
D. 2.
Câu 54. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
Câu 55. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
x+1
Câu 56. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
6
2
3
Trang 4/10 Mã đề 1
!4x
!2−x
2
3
Câu 57. Tập các số x thỏa mãn
≤
là
3 # 2
"
!
2
2
A. − ; +∞ .
B. −∞; .
3
5
Câu 58. Giá trị của giới hạn lim
A. −1.
B. 0.
#
2
C. −∞; .
3
2−n
bằng
n+1
Câu 59. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. Vô nghiệm.
B. 3 nghiệm.
"
!
2
D.
; +∞ .
5
C. 2.
D. 1.
√
4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. 2 nghiệm.
D. 1 nghiệm.
Câu 60. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
Câu 61. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.
C. 20.
D. 30.
2
Câu 62. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 7.
C. 8.
D. 6.
Câu 63. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
√
Câu 64. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vơ số.
C. 64.
D. 62.
1
Câu 65. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
Câu 66. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Câu 67. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. 0.
C. +∞.
D. 1.
Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
4a3 3
a3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Câu 69. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 0.
C. 1.
D. 3.
Trang 5/10 Mã đề 1
Câu 70. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 71. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là
√
3
a 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 .
6
3
2
2
Câu 72. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
C. 3 .
A. 3 .
B. √ .
e
2e
2 e
D.
1
.
e2
Câu 73. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
√
a 2
a 2
B. 2a 2.
C.
.
D.
.
A. a 2.
2
4
Câu 74. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có một hoặc hai.
x2
Câu 75. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = .
C. M = e, m = 0.
D. M = , m = 0.
e
e
2
Câu 76. [1] Tập nghiệm của phương trình log2 (x − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {3}.
C. {5}.
D. {5; 2}.
Câu 77. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B.
.
C. 27.
D. 12.
2
Câu 78. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −12.
C. −5.
D. −9.
Câu 79.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =
A.
f (x)dx +
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.
Câu 80. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.
D. {3; 3}.
Câu 81. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.
Trang 6/10 Mã đề 1
Câu 82. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình lập phương.
log2 240 log2 15
−
+ log2 1 bằng
Câu 83. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 3.
B. 1.
C. −8.
D. Hình chóp.
D. 4.
Câu 84. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 85. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 5}.
D. {4; 3}.
Câu 86. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (0; 2).
D. (−∞; 1).
Câu 87. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 88. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 10 năm.
C. 8 năm.
D. 7 năm.
Câu 89. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. Khối lập phương.
3
2
Câu 90. Giá
√ x − 3x − 3x + 2
√
√ trị cực đại của hàm số y =
B. −3 − 4 2.
C. −3 + 4 2.
A. 3 + 4 2.
D. Khối tứ diện đều.
√
D. 3 − 4 2.
Câu 91. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 92. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Câu (II) sai.
Câu 93. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1
C. lim k = 0 với k > 1.
n
C. Khơng có câu nào D. Câu (I) sai.
sai.
B. lim un = c (Với un = c là hằng số).
1
D. lim √ = 0.
n
Câu 94. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
Trang 7/10 Mã đề 1
Câu 95. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
B. −∞; − .
C. − ; +∞ .
A. −∞; .
2
2
2
!
1
D.
; +∞ .
2
Câu 96. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 3.
D. 2.
t
9
Câu 97. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. 1.
D. Vô số.
Câu 98. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 16 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 99. Hàm số nào sau đây khơng có cực trị
A. y = x3 − 3x.
B. y = x4 − 2x + 1.
Câu 100. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.
√
x2 + 3x + 5
Câu 101. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. − .
A. .
4
4
1
C. y = x + .
x
D. y =
x−2
.
2x + 1
B. f (x) xác định trên K.
D. f (x) có giá trị nhỏ nhất trên K.
C. 1.
D. 0.
1
Câu 102. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 103. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.
C. 8.
D. 30.
Câu 104. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là
√
4a3
2a3 3
2a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 105. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 7%.
D. 0, 5%.
Câu 106. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 8.
C. 3.
D. 6.
Z 2
ln(x + 1)
Câu 107. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 3.
D. 0.
Câu 108. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. +∞.
C. 3.
D. 1.
Trang 8/10 Mã đề 1
Câu 109.
thức nào sau đây khơng có nghĩa
√ Biểu
0
B. 0−1 .
A. (− 2) .
C. (−1)−1 .
D.
√
−1.
−3
Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
là
√
3
10a 3
A. 40a3 .
B. 10a3 .
C.
.
D. 20a3 .
3
! x3 −3mx2 +m
1
nghịch biến trên
Câu 111. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ R.
C. m , 0.
D. m ∈ (0; +∞).
Câu 112. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là
√
√
a3 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
6
4
q
2
Câu 113. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [0; 1].
π
Câu 114. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
2 π4
1 π3
B.
e .
C. 1.
D.
e .
A. e .
2
2
2
Câu 115. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là
√
3
3
2a 6
a 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
9
2
12
4
1
Câu 116. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
C. −3.
D. 3.
3
3
Câu 117. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 118. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.
C. 6.
Câu 119. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = 0.
D. 8.
D. x = −5.
Câu 120. [1] Đạo hàm của làm số y = log x là
1
ln 10
1
1
A.
.
B. y0 =
.
C. y0 =
.
D. y0 = .
10 ln x
x
x ln 10
x
[ = 60◦ , S O
Câu 121. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng
√
√
2a 57
a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
ln x p 2
1
Câu 122. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
3
9
3
Trang 9/10 Mã đề 1
Câu 123. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
Câu 124. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. 7.
C. 5.
D. .
A.
2
2
Câu 125. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 6).
Câu 126. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 210 triệu.
C. 220 triệu.
D. 216 triệu.
Câu 127. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n lần.
D. n2 lần.
1 + 2 + ··· + n
Câu 128. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = 0.
D. lim un = .
2
0 0 0 0
Câu 129. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
C.
.
B. 2
.
D.
.
√
√
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 130. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.
C. y0 = x + ln x.
D. y0 = 1 + ln x.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
3.
D
4.
5.
7.
B
8. A
10.
11.
D
12.
13.
D
14.
15.
D
16.
B
18.
19.
21.
D
6. A
C
9. A
17.
B
D
B
D
B
D
B
C
20.
B
22.
B
23.
D
24.
D
25.
D
26.
27.
D
28.
B
29.
D
30.
B
C
31.
C
32. A
33.
C
34.
C
36.
C
35.
B
37.
39.
D
38. A
40.
B
C
41.
D
42.
B
43.
D
44.
B
45.
D
46.
B
48.
B
50.
B
52.
B
47. A
49.
51.
C
B
53.
55.
D
54.
C
56. A
B
57. A
58. A
59.
C
60. A
D
61.
62.
B
63. A
64.
D
65. A
66.
D
67.
B
68. A
1
69. A
70.
D
71.
C
72.
D
73.
C
74.
D
75.
C
76.
77. A
D
79.
81.
B
78.
B
80.
B
82.
B
83.
C
84. A
85.
C
86.
87. A
D
C
91.
93. A
90.
C
92.
C
94. A
95.
98.
D
99.
D
96.
C
97. A
B
100. A
B
102.
103. A
C
104. A
105.
C
106.
107. A
109.
C
88. A
89.
101.
C
C
108. A
110.
B
111. A
112.
113. A
114.
D
B
D
115.
C
116. A
117.
C
118.
C
120.
C
119. A
121.
B
122. A
123.
D
124.
125.
D
126. A
127. A
129.
D
2
D
128.
D
130.
D