Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (810)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.35 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

4a3 3
a3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
x2 − 9
Câu 2. Tính lim
x→3 x − 3


A. −3.
B. +∞.
C. 6.
D. 3.
Câu 3. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 4 mặt.

D. 6 mặt.

Câu 4. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
ln 2
1
A. 2.
B.
.
C. 1.
D. .
2
2
x
9
Câu 5. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
D. −1.
A. 2.
B. 1.

C. .
2
Câu 6. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
4

0

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 2.

C. 0.

D. 3.

Câu 7. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
C. −2.
D. −4.
A. −7.
B.
27
Câu 8. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của khối
chóp A.GBC
A. V = 4.
B. V = 3.

C. V = 6.
D. V = 5.

Câu 9. Xác định phần ảo của số√phức z = ( 2 + 3i)2

A. 7.
B. 6 2.
C. −6 2.
D. −7.
Câu 10. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. log2 13.
D. 13.
Câu 11. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp đôi.
Câu 12. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 30.

C. 12.

D. 10.

Câu 13. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).

B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Trang 1/10 Mã đề 1


Câu 14. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.

C. 5.

D. 4.

Câu 15. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Không có.
B. Có một.
C. Có vơ số.
D. Có hai.
Z 1
6
2
3
Câu 16. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.


B. 4.

C. 6.

D. −1.

Câu 17. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
A. 8 3.
B.
.
C.
.
D. 6 3.
3
3
Câu 18. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối lập phương.
Câu 19. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

A. Hai cạnh.
B. Bốn cạnh.
C. Ba cạnh.
Câu 20. Tính lim
A. 0.

5
n+3

B. 2.

D. Năm cạnh.

C. 3.

D. 1.
2

x
Câu 21. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 1.
C. M = e, m = .
D. M = e, m = 0.
A. M = , m = 0.
e
e
Câu 22. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần

lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
5
7
8
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
A.
3
3
3
Câu 23. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.


B. Cả hai câu trên sai.

C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.

Câu 24. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =

3
3
2a 3
2a
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Z 1
Câu 25. Cho

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2

0

B. 1.

C.

1
.
4

D. 0.
Trang 2/10 Mã đề 1


Câu 26. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x)g(x)] = ab.
D. lim
= .

x→+∞
x→+∞ g(x)
b
d = 120◦ .
Câu 27. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B.
.
C. 3a.
D. 2a.
2
Câu 28. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 29. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(−4; 8).
2

Câu 30. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 7.
C. 5.


D. 6.

Câu 31. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

C. Cả ba mệnh đề.

D. (I) và (II).

Câu 32. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 2; −1).

C. ~u = (2; 1; 6).
D. ~u = (1; 0; 2).
Câu 33. [1] Đạo hàm của làm số y = log x là
1
1
1
.
B. y0 = .
C. y0 =
.
A.
10 ln x
x
x ln 10
Câu 34. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m = 0.
Câu 35. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. y0 =

ln 10
.
x


D. m > 0.
D. Khối 12 mặt đều.

2

Câu 36. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 2 − log2 3.
C. 1 − log3 2.
D. 1 − log2 3.
1 − xy
Câu 37. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 + 19
18 11 − 29
2 11 − 3
9 11 − 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
21

3
9
Câu 38. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 120 cm2 .
Trang 3/10 Mã đề 1



Câu 39. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
Câu 40. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.

C. 12.

D. 8.

Câu 41. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.

f (x)dx = f (x).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 42. Khối lập phương thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {4; 3}.
D. {5; 3}.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 43. Gọi F(x) là một nguyên hàm của hàm y =
x
3
8
8
1
1
B. .
C. .
D. .
A. .
9
3
9
3

Câu 44. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc
Thể tích khối chóp S .ABC√là
√ với đáy và S C = a 3.3 √

3
a 6
a 3
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
12
2
4
9
8
Câu 45. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 82.
C. 81.
D. 96.

Câu 46. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. Không tồn tại.

D. −5.

Câu 47. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
x−3 x−2 x−1
x
Câu 48. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (−∞; 2).
C. [2; +∞).
D. (2; +∞).
Câu 49. Cho hình chóp S .ABCD

√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD


3
3
a
a
3
a3 3
3
A. a .
B.
.
C.
.
D.
.
3
3
9
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 50. Tìm m để hàm số y =
x+m
A. 67.
B. 26.
C. 45.
D. 34.

Câu 51. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. .
B. .
C. 1.
D.
.
2
2
2
Câu 52. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a =
.
D. log2 a = − loga 2.
log2 a
loga 2
Trang 4/10 Mã đề 1


Câu 53. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.

D. Phần thực là −1, phần ảo là 4.
Câu 54. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.
D. 1 + 2 sin 2x.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 55. [2] Phương trình log x 4 log2
12x − 8
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 56. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
v! n
un
= +∞.
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.

vn
Câu 57. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. Khơng tồn tại.

D. 9.

Câu 58. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
Câu 59. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 60. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
3
a 3
a3 2
a3 3
a 3

.
B.
.
C.
.
D.
.
A.
12
6
12
4
Câu 61. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C. a 6.
.
D.
2
6
3

x2 − 5x + 6
Câu 62. Tính giới hạn lim
x→2
x−2
A. 1.
B. −1.
C. 0.
D. 5.
2
x − 3x + 3
Câu 63. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 1.
C. x = 3.
D. x = 0.
Câu 64. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 9 mặt.

D. 8 mặt.

Câu 65. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.

C. 4.


D. 2.

Câu 66. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.

C. 8.

D. 4.
Trang 5/10 Mã đề 1


3

Câu 67. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e2 .

D. e.

Câu 68. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



a3 3
2a3 3
5a3 3

4a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 69. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
C. m > − .
D. m ≥ 0.
A. m ≤ 0.
B. − < m < 0.
4
4
Câu 70. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
5
13
A. −

.
B.
.
C. − .
D.
.
100
25
16
100
Câu 71. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 10 .(3)40
C 20 .(3)30
C 20 .(3)20
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
2
2x
Câu 72. [2-c] Giá trị nhỏ nhất của hàm số y = (x − 2)e trên đoạn [−1; 2] là
A. 2e2 .

B. 2e4 .
C. −2e2 .
D. −e2 .
Câu 73. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 14 năm.
Câu 74. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
B. 2
.
C. √
.
D. √
.
A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2

Câu 75. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3
a3 15
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
25
3
5
25
Câu 76. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 2

a 3
A.
.
B.
.
C.
.
D. a3 3.
2
2
4
Câu 77. Tứ diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 3}.
D. {5; 3}.
1
Câu 78. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
a
1

Câu 79. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 2.
C. 4.
D. 7.
Trang 6/10 Mã đề 1


Câu 80. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−1; 0).
!
1
1
1
+
+ ··· +
Câu 81. Tính lim
1.2 2.3
n(n + 1)
3
A. 1.
B. 2.
C. 0.
D. .
2
Câu 82.! Dãy số nào sau đây có giới
!n hạn là 0?

!n
!n
n
1
4
5
5
A.
.
B.
.
C. − .
D.
.
3
e
3
3
2n + 1
Câu 83. Tính giới hạn lim
3n + 2
1
3
A. .
B. .
2
2

C. 0.


D.

2
.
3


Câu 84. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a 3
a3 3
a3
A.
.
B.
.
C.
.
D. a3 3.
12
3
4
Câu 85. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {3}.
C. {5; 2}.
D. {2}.

Câu 86. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).

C. D = R \ {1}.

D. D = R.

Câu 87. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều. D. Khối 12 mặt đều.
1
Câu 88. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 89. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3



2 3
A. 3.
B.
.
C. 1.
D. 2.
3
Câu 90. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.
D. 102.016.000.
Câu 91. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. V = 4π.
D. 8π.
2x + 1
Câu 92. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. −1.
C. 1.
D. 2.
2

Câu 93. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 7/10 Mã đề 1


(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 1.

C. 2.
D. 3.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 94. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. −2.
C. −5.
D. 0.
Câu 95. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
A. m =

.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4e + 2
4 − 2e
4 − 2e
Câu 96. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.

Câu 97. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


3a
3a 38
3a 58
a 38
.
B.
.

C.
.
D.
.
A.
29
29
29
29
d = 30◦ , biết S BC là tam giác đều
Câu 98. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
13
9

16
Câu 99. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y−2 z−3
=
.
B.
=
=
.
A. =
2
3
−1
2
3

4
x−2 y+2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
2
2
1 1
1
!
x+1
Câu 100. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
.
B.
.
C.
.
D. 2017.
A.
2017

2018
2018
d = 60◦ . Đường chéo
Câu 101. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
2a3 6
a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Câu 102. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.

B. 8.
C. 6.
D. 10.
x+1
Câu 103. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
6
3
2
Câu 104. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 1.
D. 4 − 2 ln 2.
Trang 8/10 Mã đề 1


12 + 22 + · · · + n2
n3
B. +∞.

Câu 105. [3-1133d] Tính lim


2
.
3
Câu 106. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 27.
A. 0.

C.

D.

1
.
3

D. 10.

Câu 107. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).
C. (−∞; 2).
D. (−∞; 0) và (2; +∞).
x
x+1
x−2 x−1
+
+

+
và y = |x + 1| − x − m (m là tham
Câu 108. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. [−3; +∞).
C. (−∞; −3).
D. (−∞; −3].
1
Câu 109. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 2.
C. 3.
D. 4.
Câu 110. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
C. Câu (I) sai.
D. Câu (II) sai.
sai.
Câu 111. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 17 tháng.
D. 16 tháng.
Câu 112. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = 2.
log 2x
Câu 113. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3

3
2x ln 10
x
2x ln 10
x ln 10
ln2 x
m
Câu 114. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.
C. S = 32.
D. S = 24.
log7 16
Câu 115. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 2.
B. −2.
C. 4.
D. −4.
Câu 116. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
2
1
1

9
A. .
B. .
C.
.
D.
.
5
5
10
10
Trang 9/10 Mã đề 1


Câu 117. Phần thực
√ và phần ảo của số√phức z =
A. Phần thực là 2 −√1, phần ảo là √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.



2 − 1 − 3i lần lượt√l

B. Phần thực là √2, phần ảo là 1 − √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.

0 0 0 0
Câu 118.

a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
2
7
2
3
!
3n + 2
2
Câu 119. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 5.

D. 3.

Câu 120. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (1; +∞).
C. (−∞; 1).

D. (−1; 1).

Câu 121. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Câu 122. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 3).
x+2
bằng?
Câu 123. Tính lim
x→2
x
A. 1.
B. 0.
C. 2.
D. 3.
Câu 124. Bát diện đều thuộc loại

A. {4; 3}.
B. {3; 4}.

C. {5; 3}.

D. {3; 3}.

Câu 125. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng M + m

A. 8 3.
B. 16.
C. 7 3.
D. 8 2.
Câu 126.
Các khẳngZđịnh nào sau đây là sai?
Z
k f (x)dx = k

A.
Z
C.

Z

!0

f (x)dx, k là hằng số.

B.
f (x)dx = f (x).
Z
Z
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.

Câu 127. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.

C.
.
D.
.
6
12
36
24
Câu 128. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 129. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 9.
B. 6.
C. .
D. .
2
2
2
Câu 130. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 12.
D. ln 4.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
D

3.
5.

4. A

B

6.
C

7.
9.

C

10.

C

12.

C


13.

D

14. A

15.

D

16.

17.

D

18. A

C

19.
21.

B

20. A
D

23.


B

8. A

B

11.

22. A
24.

C

C
D

26.

25. A
27.

C

2.

B

29. A


30.

31.

D

33.

B

32.

C

D

34. A

35. A

36.
C

37.

C

28.

B


38. A

39. A

40.

C

41. A

42.

C

43.

C

44. A

45.

C

46.

C
C


47.

B

48.

49.

B

50.

51.

C

52.

53. A

54.

55.
57.

C
B

56.


C

C

58. A

B

59. A

60. A

61.

B

62.

63.

B

64.

65.

D

66.


C

67. A

68. A
1

B
C
B


69.

D

71.
73.

70. A

C

D

72.

B

C


74.

75. A

76. A

77.

78. A

C

79.

80.

D

81. A

D

82. A
D

83.

84.


B
D

86.

85. A
87.

D

88. A

89.

D

90.

92.

D

93.

94.

D

95.


C

96.

B
D
B

97.

D
D

98.

B

99.

100.

B

101.

102.

B

103. A


104.

B

105.

D

106.

B

107.

D

108.

D

B

109. A

110. A

111.

D


112. A

113.

D

115.

D
D

114.

C

116.

D

117.

118.

D

119. A

120.


D

121.

122.

D

123.

124.

B

B
B

D

127.

128.

D

129.

2

C


125.

126.
130. A

D

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×