TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho khối chóp S .ABC√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là
√
√ với đáy và S C = a 3.3 √
3
a 3
a3 3
2a3 6
a 6
.
B.
.
C.
.
D.
.
A.
12
2
4
9
Câu 2. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
Câu 3. [4-1246d] Trong tất cả √
các số phức z thỏa mãn |z √
− i| = 1. Tìm giá trị lớn nhất của |z|
A. 2.
B. 5.
C. 3.
D. 1.
Câu 4. Cho số phức z thỏa mãn |z +√3| = 5 và |z − 2i| = |z − 2 √
− 2i|. Tính |z|.
C. |z| = 10.
A. |z| = 17.
B. |z| = 17.
D. |z| = 10.
Câu 5. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x+1
bằng
Câu 6. Tính lim
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.
D. 1.
4
3
Câu 7. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có một.
D. Có hai.
π
Câu 8. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 2 3.
B. T = 3 3 + 1.
C. T = 4.
D. T = 2.
Câu 9. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.
B. Câu (III) sai.
C. Câu (I) sai.
D. Khơng có câu nào
sai.
Câu 10. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Trang 1/11 Mã đề 1
Câu 11. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. V = 4π.
C. 32π.
D. 16π.
Câu 12. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
là
√mặt phẳng (AIC) có diện tích
√
√ hình chóp S .ABCD với
2
2
2
2
a 7
a 5
11a
a 2
.
B.
.
C.
.
D.
.
A.
4
8
16
32
Câu 13. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 3}.
D. {5; 3}.
Câu 14. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 12.
C.
.
D. 27.
2
Câu 15. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 2.
B.
.
C.
.
D. a 3.
2
3
Câu 16. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.
Câu 17. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B. a 6.
.
D.
.
A.
C.
3
2
6
Câu 18. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −2.
C. −4.
D. −7.
27
Câu 19. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
D. aα bα = (ab)α .
A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. β = a β .
a
Câu 20. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Một mặt.
C. Bốn mặt.
D. Hai mặt.
Câu 21. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
D. {3; 4}.
C. {3; 3}.
Câu 22. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
a 3
a 3
2a 3
B.
.
C.
.
D.
.
A. a 3.
2
3
2
Câu 23. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 0.
C. 9.
D. 7.
Câu 24. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 3, 55.
C. 20.
D. 24.
Trang 2/11 Mã đề 1
Câu 25.
[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3
q
x+ log23 x + 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
log(mx)
Câu 26. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 27. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. (−3; +∞).
D. [−3; +∞).
!x
1
Câu 28. [2] Tổng các nghiệm của phương trình 31−x = 2 +
là
9
A. log2 3.
B. − log3 2.
C. − log2 3.
D. 1 − log2 3.
Câu 29. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m > 0.
D. m = 0.
Câu 30. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
18
6
15
1
Câu 31. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 32. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
√
Câu 33. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
a 38
3a
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
!4x
!2−x
3
2
Câu 34. Tập các số x thỏa mãn
≤
là
3 # 2
!
#
"
!
"
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
5
3
5
Câu 35. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ min |z − 1 − i|.
√ thức |z − 1 + 3i| = 3. Tìm
D. 2.
A. 2.
B. 1.
C. 10.
Câu 36. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. 1 nghiệm.
Câu 37. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
D. Khối tứ diện đều.
C. Khối 20 mặt đều.
Câu 38. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
5
8
7
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
3
3
3
Trang 3/11 Mã đề 1
Câu 39. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 2.
√
Câu 40. Thể tích của khối lập phương có cạnh bằng a 2 √
√
√
2a3 2
A. V = a3 2.
.
B. 2a3 2.
C.
3
Câu 41. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối 12 mặt đều.
D. 1.
D. V = 2a3 .
D. Khối tứ diện đều.
Câu 42. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
2
4
8
Câu 43. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; − .
2
2
2
!
1
D. −∞; .
2
Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
√
3
3
2a 3
a3
4a3 3
a
.
B.
.
C.
.
D.
.
A.
6
3
3
3
x−1 y z+1
Câu 45. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 46. Tính lim
x→+∞
A. 1.
x−2
x+3
B. 2.
C. −3.
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
log7 16
Câu 48. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. −2.
C. 2.
2
D. − .
3
Câu 47. [1-c] Giá trị biểu thức
D. 3.
D. 4.
√
Câu 49. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
a3 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
18
36
6
6
[ = 60◦ , S O
Câu 50. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng
√
√
a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19
1 − 2n
Câu 51. [1] Tính lim
bằng?
3n + 1
2
2
1
A. − .
B. .
C. 1.
D. .
3
3
3
Trang 4/11 Mã đề 1
Câu 52. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√
√
√ Thể tích khối chóp S 3.ABC
3
a 2
a3 3
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
6
12
4
12
Câu 53. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .
Câu 54. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.
C. Cả hai câu trên sai.
D. Chỉ có (II) đúng.
Câu 55. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
Câu 56. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
A. √
.
D.
.
B. √
.
C. 2
.
√
a + b2
a2 + b2
a2 + b2
2 a2 + b2
√
x2 + 3x + 5
Câu 57. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 0.
C. − .
D. 1.
4
4
Câu 58. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối bát diện đều.
Câu 59. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 30.
C. 12.
D. 8.
2
ln x
m
Câu 60. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 24.
C. S = 32.
D. S = 22.
2
Câu 61. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 6.
C. 8.
3
x −1
Câu 62. Tính lim
x→1 x − 1
A. 0.
B. 3.
C. −∞.
D. 5.
D. +∞.
Câu 63. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Câu 64. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 1.
!
1
1
1
Câu 65. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. +∞.
C. .
2
2
D. 0.
D. 2.
Trang 5/11 Mã đề 1
Câu 66. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.
Câu 67. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 − sin 2x.
C. 1 + 2 sin 2x.
D. −1 + 2 sin 2x.
2
Câu 68. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √4
B. |z| = 5.
C. |z| = 5.
A. |z| = 2 5.
D. |z| =
√
5.
Câu 69. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d song song với (P).
Câu 70. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 71. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. Cả ba mệnh đề.
C. (I) và (II).
D. (II) và (III).
Câu 72. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3
! x3 −3mx2 +m
1
Câu 73. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m , 0.
D. m ∈ (0; +∞).
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 74. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
2
A.
D.
.
B.
.
C. 2a 2.
.
24
24
12
Câu 75. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim f (x) = f (a).
x→a
x→a
x→a
Câu 76. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m < .
D. m > .
4
4
4
4
Câu 77. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 2.
D. 0, 4.
Trang 6/11 Mã đề 1
Câu 78. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m > 3.
D. m ≥ 3.
1
bằng
Câu 79. [1] Giá trị của biểu thức log √3
10
1
1
D. .
A. −3.
B. 3.
C. − .
3
3
0 0 0 0
Câu 80. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; −3).
Câu 81. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e + 1.
C. .
D. 2e.
e
Câu 82. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
D. √
.
A. √
2
2
2
2
2
2
a +b
2 a +b
a +b
a + b2
Câu 83. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 4.
D. ln 12.
Câu 84. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 5.
B. 25.
C.
√
a
5
√
bằng
5.
D.
1
.
5
ln x p 2
1
Câu 85. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
B. .
C. .
D. .
A. .
9
3
9
3
3
2
x
Câu 86. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x + (m √+ 1)2 trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±1.
C. m = ± 3.
D. m = ±3.
Câu 87. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√
√M + m
√
A. 16.
B. 7 3.
C. 8 3.
D. 8 2.
Câu 88. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
Z 1
6
2
3
Câu 89. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.
B. −1.
C. 6.
D. 4.
log(mx)
Câu 90. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 91. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.
C. 30.
D. 10.
Câu 92. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Trang 7/11 Mã đề 1
u0 (x)
dx = log |u(x)| + C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Z
C.
Câu 93. Dãy số nào có giới hạn bằng 0?
n3 − 3n
A. un =
.
B. un = n2 − 4n.
n+1
!n
−2
C. un =
.
3
!n
6
D. un =
.
5
Câu 94. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3 3
a3 3
a3
.
B.
.
C.
.
D. a3 .
A.
3
2
6
Câu 95. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. log2 2020.
D. 2020.
√
√
Câu 96.
√ Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6√− x
A. 2 3.
B. 2 + 3.
C. 3 2.
D. 3.
Câu 97. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
√
a 2
a 2
.
D.
.
B. 2a 2.
C.
A. a 2.
4
2
Câu 98. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lăng trụ tam giác.
C. Khối lập phương.
D. Khối tứ diện.
Câu 99. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 6%.
D. 0, 8%.
Câu 100. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 101. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
√
3
3
3
2a
2a 3
4a3 3
4a
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 102.
hạn là 0?
!n Dãy số nào sau đây có !giới
!n
!n
n
1
4
5
5
A.
.
B.
.
C.
.
D. − .
3
e
3
3
Câu 103. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −1.
D. m = −3.
1 + 2 + ··· + n
Câu 104. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
C. lim un = 1.
D. lim un = .
2
Câu 105. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) + g(x)] = a + b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
Trang 8/11 Mã đề 1
Câu 106. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 107. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. .
C. 5.
D. 7.
2
2
Câu 108. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 8 mặt.
D. 7 mặt.
2
x −9
Câu 109. Tính lim
x→3 x − 3
A. 6.
B. −3.
C. 3.
D. +∞.
d = 30◦ , biết S BC là tam giác đều
Câu 110. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
9
13
26
!
x+1
Câu 111. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
A. 2017.
B.
.
C.
.
D.
.
2017
2018
2018
!2x−1
!2−x
3
3
≤
là
Câu 112. Tập các số x thỏa mãn
5
5
A. [1; +∞).
B. (−∞; 1].
C. [3; +∞).
D. (+∞; −∞).
Câu 113. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 114. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 2.
C. 4.
D. 3.
√
Câu 115. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
Câu 116. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. .
C. 9.
D. 6.
2
2
Câu 117. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 2.
C. 1.
D. 3.
Câu 118. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 210 triệu.
C. 220 triệu.
D. 216 triệu.
Trang 9/11 Mã đề 1
Câu 119. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
là
√
3
10a 3
.
D. 10a3 .
A. 20a3 .
B. 40a3 .
C.
3
Câu 120. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
2n + 1
Câu 121. Tìm giới hạn lim
n+1
A. 2.
B. 0.
C. 3.
D. 1.
Câu 122. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≥ 0.
C. m > − .
D. m ≤ 0.
4
4
d = 60◦ . Đường chéo
Câu 123. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
3
3
√
a
6
2a
6
4a3 6
.
B. a3 6.
C.
.
D.
.
A.
3
3
3
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
Câu 124. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
nhất Pmin của P√ = x + y.
√
√
√
2 11 − 3
18 11 − 29
9 11 + 19
9 11 − 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
21
9
9
Câu 125. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −5.
C. x = −2.
D. x = 0.
Câu 126. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 127. Tính thể tích khối lập phương biết tổng diện tích√tất cả các mặt bằng 18.
D. 8.
A. 27.
B. 9.
C. 3 3.
x−3
Câu 128. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. +∞.
C. 0.
D. 1.
Câu 129. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số cạnh của khối chóp bằng 2n.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 130. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 10 năm.
D. 9 năm.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2. A
3. A
4.
C
5.
6. A
7.
D
8.
9.
D
10.
12.
B
C
D
13.
14. A
15.
16.
B
17.
18.
B
19.
20.
C
21.
22.
C
23.
24. A
25.
26. A
27. A
28.
C
C
31. A
33.
D
C
B
D
C
D
C
D
29.
B
32.
B
34. A
35.
B
36.
B
37.
B
38.
B
39.
D
40.
B
41.
D
42.
B
43. A
44.
45. A
46. A
47. A
48. A
49. A
50.
D
51. A
52.
D
53. A
54. A
55. A
56.
57.
D
B
58.
C
59. A
60.
C
61. A
62.
C
63.
D
64.
65.
D
66.
67.
D
68.
69.
70. A
C
1
B
D
B
C
71.
73.
72.
C
B
74.
75.
D
78.
79.
B
B
84.
B
86. A
87. A
88.
D
B
90.
91. A
D
C
92.
93.
94.
C
95. A
B
96.
D
97.
C
D
98.
99. A
100.
101. A
102. A
103. A
104.
107.
B
108. A
110.
C
82.
85. A
89.
D
80.
C
81. A
105.
B
76. A
77. A
83.
C
B
D
B
109. A
111.
C
112. A
D
113.
B
115.
B
116. A
117.
B
118. A
119. A
120. A
121. A
114.
122.
D
C
123.
124. A
125. A
126.
128.
130.
B
D
127.
129.
C
D
2
C
B