TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 10.
C. f 0 (0) = ln 10.
ln 10
log2 240 log2 15
Câu 2. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. 3.
C. 1.
Câu 3. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim qn = 1 với |q| > 1.
D. f 0 (0) = 1.
D. −8.
B. lim un = c (Với un = c là hằng số).
D. lim
1
= 0 với k > 1.
nk
Câu 4. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường thẳng
BB0 và AC 0 bằng
ab
1
ab
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 5. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 20 .(3)20
C 40 .(3)10
C 20 .(3)30
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
log(mx)
Câu 6. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 7. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
4
2
8
Câu 8. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
1
B. Hàm số nghịch biến trên khoảng (1; +∞).
A. Hàm số nghịch biến trên khoảng ; 1 .
3
!
!
1
1
D. Hàm số đồng biến trên khoảng ; 1 .
C. Hàm số nghịch biến trên khoảng −∞; .
3
3
Câu 9. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
Câu 10. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
Câu 11. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
Trang 1/10 Mã đề 1
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 2.
C. 1.
D. 0.
Câu 12. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. n3 lần.
D. 2n3 lần.
1
Câu 13. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2) ∪ (−1; +∞). C. −2 < m < −1.
D. (−∞; −2] ∪ [−1; +∞).
Câu 14. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα+β = aα .aβ .
B. β = a β .
C. aαβ = (aα )β .
D. aα bα = (ab)α .
a
1 − xy
Câu 15. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.
√
√
√
18 11 − 29
2 11 − 3
9 11 + 19
9 11 − 19
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
A. Pmin =
21
3
9
9
Câu 16. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vơ nghiệm.
B. 3.
C. 2.
D. 1.
Câu 17. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B.
.
C. 7.
D. .
2
2
Câu 18. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 3, 55.
C. 24.
D. 20.
x
9
Câu 19. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 2.
C. 1.
D. .
2
Z 1
6
2
3
Câu 20. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.
B. 2.
C. 4.
D. 6.
Câu 21. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 210 triệu.
D. 216 triệu.
Câu 22. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 10.
D. 27.
Câu 23. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vô nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.
Câu 24. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (−∞; 6, 5).
C. (4; +∞).
D. [6, 5; +∞).
Trang 2/10 Mã đề 1
Câu 25. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.
D. 9 mặt.
Câu 26. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
2a 3
4a3 3
a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Câu 27. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 1.
Câu 28. [1] Biết log6
A. 4.
√
a = 2 thì log6 a bằng
B. 6.
C. +∞.
D. 2.
C. 36.
D. 108.
Câu 29. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5}.
C. {5; 2}.
D. {2}.
Câu 30. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±1.
C. m = ± 3.
D. m = ±3.
7n2 − 2n3 + 1
Câu 31. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. - .
3
3
C. 1.
D. 0.
Câu 32. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 1.
B. 10.
C. 2.
D. 2.
Câu 33. Tính lim
x→5
A. +∞.
x2 − 12x + 35
25 − 5x
B. −∞.
2
C. − .
5
D.
2
.
5
D.
2
.
e
Câu 34. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.
B. 3.
C. 2e.
Câu 35. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. 8π.
D. V = 4π.
Câu 36. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.
C. Cả hai đều sai.
D. Chỉ có (I) đúng.
Câu 37. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 1.
D. 0.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 38. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 4.
C. 3.
D. 2.
Trang 3/10 Mã đề 1
Câu 39. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2
a 5
a 2
a 7
11a
.
B.
.
C.
.
D.
.
A.
32
16
4
8
Câu 40. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 6.
C. 3.
D. 8.
Câu 41. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 12 cạnh.
C. 11 cạnh.
D. 10 cạnh.
Câu 42. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≥ .
C. m ≤ .
D. m > .
A. m < .
4
4
4
4
2
2
Câu 43. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. 9.
C. .
D. .
2
2
Câu 44. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 9 mặt.
D. 3 mặt.
Câu 45. Dãy số nào có giới hạn bằng 0?
!n
6
2
.
A. un = n − 4n.
B. un =
5
!n
n3 − 3n
−2
C. un =
.
D. un =
.
3
n+1
√
Câu 46. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
Câu 47. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 2.
D. 1.
Câu 48. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. (−∞; 1).
D. R.
Câu 49. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. Cả ba mệnh đề.
C. (II) và (III).
D. (I) và (II).
[ = 60◦ , S O
Câu 50. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√
2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19
19
17
Câu 51. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
S
H
⊥
(ABCD),
S
A
=
a
√
√ 5. Thể tích khối chóp3 S .ABCD là
3
3
2a 3
4a 3
4a
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 4/10 Mã đề 1
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. [−3; +∞).
C. (−∞; −3).
D. (−∞; −3].
Câu 52. [4-1212d] Cho hai hàm số y =
Câu 53. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
Câu 54. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 64cm3 .
C. 72cm3 .
D. 27cm3 .
√
Câu 55. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.
D. 2 nghiệm.
Câu 56. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = −10.
D. P = 10.
log 2x
là
Câu 57. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
.
C. y0 =
.
D. y0 = 3
.
.
B. y0 = 3
A. y0 =
3
3
x
x ln 10
2x ln 10
2x ln 10
Câu 58. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R \ {0}.
C. D = (0; +∞).
D. D = R.
1
Câu 59. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 60. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
1
Câu 61. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3.
B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.
D. m = 4.
!
5 − 12x
Câu 62. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 63. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−3; 1].
C. [−1; 3].
D. [1; +∞).
Câu 64.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 5.
C. 2.
D. 1.
2
Câu 65. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 3 .
B. √ .
C. 2 .
2e
e
2 e
Câu 66. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Bát diện đều.
D.
2
.
e3
D. Thập nhị diện đều.
Trang 5/10 Mã đề 1
Câu 67. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 − 2; m = 1.
Câu 68. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
C. y0 = 1 + ln x.
D. y0 = ln x − 1.
Câu 69. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
C. − < m < 0.
D. m ≥ 0.
A. m ≤ 0.
B. m > − .
4
4
π
Câu 70. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
1 π3
3 π6
2 π4
A.
e .
B. 1.
C. e .
D.
e .
2
2
2
2
Câu 71. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 2.
C. 3.
Câu 72. Tính lim
A. +∞.
x→1
x3 − 1
x−1
B. 3.
C. 0.
D. 5.
D. −∞.
Câu 73.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 8.
D. 9.
Câu 74. Hàm số y =
A. x = 3.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.
Câu 75. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.
Câu 76. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim qn = 0 (|q| > 1).
C. x = 0.
D. x = 2.
C. 8.
D. 6.
B. lim un = c (un = c là hằng số).
1
D. lim = 0.
n
x2
Câu 77. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = 0.
C. M = e, m = .
D. M = , m = 0.
e
e
√
Câu 78. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
√
a 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
4
12
tan x + m
Câu 79. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
!
1
1
1
Câu 80. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 2.
C. .
D. 0.
2
Trang 6/10 Mã đề 1
Câu 81. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 16 m.
D. 12 m.
Câu 82. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
a
2a
.
B.
.
C.
.
D. .
A.
9
9
9
9
Câu 83. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a =
.
loga 2
log2 a
Câu 84. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {5; 3}.
D. {4; 3}.
Câu 85. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. 4.
D. −4.
Câu 86. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 2.
1
3|x−1|
C. 4.
= 3m − 2 có nghiệm duy
D. 1.
Câu 87. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
x2 − 5x + 6
x→2
x−2
B. 5.
Câu 88. Tính giới hạn lim
A. 0.
C. 1.
D. −1.
Câu 89. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 1.
D. 4 − 2 ln 2.
x + log3 x + m = 0 có nghiệm
Câu 90. [3-1224d] Tìm tham số thực m để phương trình
1
1
1
1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4
4
4
Câu 91. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
log23
Câu 92. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.
C. 12.
D. 20.
Câu 93. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
B.
f (x)dx = f (x).
f (x)dx = F(x) + C.
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 94. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
Trang 7/10 Mã đề 1
Câu 95. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 =
.
B. y0 = .
x ln 10
x
Câu 96. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. y0 =
ln 10
.
x
D.
C. Khối bát diện đều.
2
1
.
10 ln x
D. Khối tứ diện đều.
2
sin x
Câu 97.
+ 2cos x lần lượt
√ là
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
B. 2 và 3.
C. 2 và 3.
D. 2 và 2 2.
A. 2 2 và 3.
2n + 1
Câu 98. Tìm giới hạn lim
n+1
A. 2.
B. 0.
C. 1.
D. 3.
Câu 99. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
= −∞.
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Z 1
Câu 100. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
B. .
C. 1.
D. 0.
A. .
2
4
Câu 101. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 102. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (I) sai.
sai.
C. Câu (III) sai.
Câu 103. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 6 mặt.
D. Câu (II) sai.
D. 10 mặt.
Câu 104. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − 2 .
C. −e.
D. − .
2e
e
e
Câu 105. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√ của hàm số. Khi đó tổng
√M + m
A. 7 3.
B. 8 3.
C. 8 2.
D. 16.
Trang 8/10 Mã đề 1
Câu 106. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log 14 x.
D. y = loga x trong đó a =
C. y = log π4 x.
√
3 − 2.
Câu 107. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
8a 3
a 3
8a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 108. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là
√
√
a3 3
a3 3
a3
.
B.
.
C.
.
D. a3 .
A.
3
2
6
Câu 109. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e2 .
D. 2e4 .
x−3 x−2 x−1
x
Câu 110. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (−∞; 2).
C. [2; +∞).
D. (2; +∞).
Câu 111. Tính
z biết (1 + 2i)z2 = 3 + 4i. √
√ mô đun của số phức √
4
B. |z| = 5.
C. |z| = 5.
A. |z| = 2 5.
D. |z| = 5.
Câu 112. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 113. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
+ m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 1.
C. 0.
D. 2.
Câu 114. [4] Xét hàm số f (t) =
9t
Câu 115. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −12.
B. −5.
C. −9.
D. −15.
1 − n2
bằng?
Câu 116. [1] Tính lim 2
2n + 1
1
1
1
A. 0.
B. − .
C. .
D. .
2
3
2
1 − 2n
Câu 117. [1] Tính lim
bằng?
3n + 1
2
1
2
A. 1.
B. − .
C. .
D. .
3
3
3
Câu 118. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
A. 2.
B. 2 13.
C. 26.
D.
.
13
!
1
1
1
Câu 119. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. +∞.
C. .
D. 2.
2
2
Trang 9/10 Mã đề 1
Câu 120. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
B. 3.
C. 1.
D. .
A. .
2
2
√
Câu 121. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
2
6
Câu 122. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.
un
Câu 123. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. 1.
D. +∞.
√
Câu 124. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 6
a 2
.
B.
.
C.
.
D.
.
A.
6
18
36
6
Câu 125. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối bát diện đều.
√
Câu 126.√ Xác định phần ảo của √
số phức z = ( 2 + 3i)2
A. −6 2.
B. 6 2.
C. −7.
D. 7.
Câu 127. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
log 2x
là
Câu 128. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
A. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 129. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
x−2
Câu 130. Tính lim
x→+∞ x + 3
2
A. 1.
B. − .
C. −3.
D. 2.
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2.
3.
C
4.
5.
C
6.
7. A
C
D
10. A
12.
B
13. A
15.
C
8. A
9.
11.
D
14.
D
17.
20.
21. A
22.
D
23.
C
18. A
C
26.
B
16.
B
19.
C
C
B
24. A
D
27.
C
28. A
29.
B
30. A
31.
B
32. A
33.
34.
B
D
36.
B
B
37.
D
38.
39.
D
40.
C
41.
D
42.
C
43.
D
44.
45.
46. A
C
47. A
49.
D
51.
C
53. A
55.
57.
D
D
69.
B
52.
D
54.
D
62.
64.
B
B
D
C
B
C
66.
C
67.
50.
60.
C
65.
B
58.
59.
63.
48.
56.
B
61.
D
D
68.
70.
B
1
D
C
D
71. A
72.
B
73. A
74.
B
75.
77.
D
C
76.
78. A
B
79. A
80. A
81.
C
82.
B
83.
C
84.
B
85. A
C
87.
89. A
86.
D
88.
D
91.
C
92. A
93.
C
94. A
95. A
96. A
97. A
98. A
99. A
100. A
101.
D
103.
102. A
104. A
C
105.
D
106. A
107.
D
108.
109.
B
C
111.
113.
B
110.
C
112.
C
114.
D
115. A
117.
C
90.
116.
D
B
118.
B
119.
D
D
120. A
121.
B
122.
B
123.
B
124.
B
126.
B
D
125.
127.
129.
C
128.
D
130. A
2
C