Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (111)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.83 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 84cm3 .
D. 48cm3 .
Câu 2. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).

C. (−∞; 0) và (2; +∞). D. (−∞; 2).

Câu 3. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. − .
C. 2.
2

D.

1


.
2

Câu 4. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.
x+2
Câu 5. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 1.
C. Vô số.
D. 3.
Câu 6. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.

Câu 7. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể tích
khối nón đã cho

√ là


3

πa 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
6
6
2
Câu 8. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|




12 17
A. 68.
B.
D. 5.
.
C. 34.
17
Câu 9. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

A. Một mặt.
B. Ba mặt.
C. Bốn mặt.
x+1
bằng
x→+∞ 4x + 3
B. 3.

D. Hai mặt.

Câu 10. Tính lim
A.

1
.
3

!4x
!2−x
2
3
Câu 11. Tập các số x thỏa mãn


#
" 3
! 2
2
2
A. −∞; .

B. − ; +∞ .
3
3

C. 1.

"

!
2
C.
; +∞ .
5

D.

1
.
4

#
2
D. −∞; .
5

Câu 12. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.

Câu 13. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
Trang 1/10 Mã đề 1


1
1
1
Câu 14. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
A. .
B. +∞.
C. 2.
2

!

Câu 15. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
ln 10

√3
4
Câu 16. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
7
A. a 3 .
B. a 3 .
C. a 3 .

D.

5
.
2

D. f 0 (0) = 10.
5

D. a 8 .

Câu 17. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m < .
D. m > .
A. m ≥ .

4
4
4
4
Câu 18.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
12
2
4


3
D.
.
4

Câu 19. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.

D. 8.


C. 20.

Câu 20. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
6
18
15
Câu 21. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.

Câu 22. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
C. m = ±1.
D. m = ± 3.
A. m = ±3.
B. m = ± 2.
Câu 23. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2
3

D. V = S h.

Câu 24. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. 0.
C. −3.
D. −6.
Câu 25. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
.
B.
.
C.

.
D.
.
A.
6
4
12
12

Câu 26. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
3a 58
3a 38
a 38
.
B.
.
C.
.
D.
.
A.
29
29
29

29
Câu 27. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 9 lần.
Trang 2/10 Mã đề 1


Câu 28. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 2
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
16

48
24
48
Câu 29. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 8%.
C. 0, 6%.
D. 0, 5%.
Câu 30. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B.
.
C. a 6.
D.
.
A.
3
2
6
Câu 31. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

A. 0, 3.
B. 0, 2.
C. 0, 4.
D. 0, 5.
Câu 32. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 14 năm.
D. 11 năm.
2

2

sin x
Câu 33.
+ 2cos x lần lượt
√ là
√ [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x) = 2
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 2 2.
A. 2 và 3.

Câu 34. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 32π.

C. V = 4π.
D. 8π.
[ = 60◦ , S O
Câu 35. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.

√ Khoảng cách từ O đến (S√BC) bằng

2a 57
a 57
a 57
.
C.
.
D.
.
A. a 57.
B.
17
19
19


Câu 36. Phần thực√và phần ảo của số phức
z
=
2

1


3i lần lượt l √


B. Phần thực là 1√− 2, phần ảo là −√ 3.
A. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 37. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 12.

D. 3.

Câu 38. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Tứ diện đều.
C. Bát diện đều.

D. Thập nhị diện đều.

Câu 39. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m , 0.

D. m > 0.

Câu 40. [2] Tổng các nghiệm của phương trình log4 (3.2 − 1) = x − 1 là
A. 1.
B. 2.

C. 3.

D. 5.

x

Câu 41. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Năm mặt.
D. Hai mặt.
p
1
ln x
Câu 42. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
3
3
9
9

Trang 3/10 Mã đề 1


Câu 43. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 44.
A. 7.
Câu 45.
A. 1.

 π π
Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
B. −1.
C. 3.
D. 1.
1 − 2n
[1] Tính lim
bằng?
3n + 1
2
1
2
B. − .
C. .
D. .
3

3
3
x
x
[1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực

Câu 46.
x≥1
A. m > 3.

3

B. m < 3.

C. m ≥ 3.
D. m ≤ 3.
x−3 x−2 x−1
x
Câu 47. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).

C. (−∞; 2].
D. (2; +∞).
Câu 48. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
24
6
12

log7 16
Câu 49. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −2.
C. 2.
D. −4.
Câu 50. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −5.
C. x = −2.

D. x = −8.

Câu 51. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
D. 5.
A. .
B. 25.
C. 5.
5
Câu 52. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −2.
C. −7.

D. −4.
27
9t
Câu 53. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. Vô số.
C. 1.
D. 0.


Câu 54. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 24 m.
D. 8 m.
Câu 55. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số cạnh của khối chóp bằng 2n.
Trang 4/10 Mã đề 1


C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 56. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1

C. lim k = 0 với k > 1.
n

B. lim un = c (Với un = c là hằng số).
1
D. lim √ = 0.
n

Câu 57. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; .
C.
; +∞ .
2
2
2

!
1
D. −∞; − .
2

Câu 58. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6

2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
2
x − 3x + 3
Câu 59. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 2.
C. x = 0.
D. x = 3.
Câu 60. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 61. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

D. Khối 20 mặt đều.

Câu 62. Trong các mệnh đề dưới đây, mệnh đề nào!sai?

un
= 0.
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
3n + 2
2
Câu 63. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 4.
D. 2.
Câu 64. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.

C. 2.

Câu 65. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. −3.
C. .
3
3
2
1−n
Câu 66. [1] Tính lim 2
bằng?
2n + 1
1
1
A. .
B. − .
C. 0.
3
2
Câu 67. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 2.
C. 6.

D. −1.

Câu 68. Khối đa diện đều loại {4; 3} có số cạnh

A. 12.
B. 20.

D. 10.

C. 30.

D. −2.
D. 3.

D.

1
.
2

Trang 5/10 Mã đề 1


Câu 69. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
c a2 + b2
abc b2 + c2
a b2 + c2
b a2 + c2

.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 70. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4
4
4

Câu 71. Thể tích của khối lập phương có cạnh bằng a 2




2a3 2
3
3
3
A. 2a 2.
B. V = a 2.
C. V = 2a .
D.
.
3
Câu 72. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x y−2 z−3
A. = =
.
B. =

=
.
1 1
1
2
3
−1
x−2 y+2 z−3
x−2 y−2 z−3
C.
=
=
.
D.
=
=
.
2
2
2
2
3
4
Câu 73. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(4; −8).
!2x−1
!2−x

3
3
Câu 74. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (−∞; 1].
C. [1; +∞).
D. (+∞; −∞).
Câu 75. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 160 cm2 .

Câu 76. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vô số.
D. 64.
x−1 y z+1
Câu 77. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1

−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x + y − z = 0.
D. 2x − y + 2z − 1 = 0.
Câu 78. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
 π
x
Câu 79. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


3 π6
2 π4
A.
e .
B.
e .
C. 1.
2
2
2n + 1
Câu 80. Tìm giới hạn lim
n+1

A. 1.
B. 0.
C. 2.

D.

1 π3
e .
2

D. 3.
Trang 6/10 Mã đề 1


Câu 81.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].

C. m ∈ [0; 2].

q
x+ log23 x + 1+4m−1 =


D. m ∈ [−1; 0].

Câu 82.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 2.
D. 1.
1

Câu 83. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (−∞; 1).
C. D = R \ {1}.

D. D = (1; +∞).

Câu 84. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 85. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 86. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
10
20

40
20
C50
.(3)40
C50
.(3)30
C50
.(3)10
C50
.(3)20
.
B.
.
C.
.
D.
.
A.
450
450
450
450
2n2 − 1
Câu 87. Tính lim 6
3n + n4
2
A. .
B. 2.
C. 0.
D. 1.

3
Câu 88. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.
C. −5.
D. −3.
[ = 60◦ , S O
Câu 89. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng

a 57
2a 57
a 57
.
B. a 57.
.
D.
.
C.
A.
17
19
19
1
Câu 90. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.

B. 2.
C. 4.
D. 1.
cos n + sin n
Câu 91. Tính lim
n2 + 1
A. 0.
B. +∞.
C. 1.
D. −∞.
Câu 92. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
x+1
Câu 93. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
B. .
C. .
A. .
2
3
6

D. 1.


π
Câu 94. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 2.
C. T = 2 3.
D. T = 3 3 + 1.
Trang 7/10 Mã đề 1


1
Câu 95. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.
1
Câu 96. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2) ∪ (−1; +∞). C. −2 < m < −1.

D. (−∞; −2] ∪ [−1; +∞).
Câu 97. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 3.

C. 2.

Câu 98. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.
x−2
Câu 99. Tính lim
x→+∞ x + 3
2
A. 1.
B. − .
3
Câu 100. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 5.

D. 0.

C. 8.


D. 4.

C. −3.

D. 2.

C. 7.

D. 9.

Câu 101. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 8 mặt.

D. 10 mặt.

Câu 102. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 103. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối tứ diện đều.


D. Khối bát diện đều.

Câu 104. [1] Đạo hàm của hàm số y = 2 là
1
1
.
B. y0 = 2 x . ln 2.
C. y0 = 2 x . ln x.
D. y0 = x
.
A. y0 =
ln 2
2 . ln x
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 105. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
x+3
Câu 106. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m

(0; +∞)?
A. 2.
B. Vơ số.
C. 1.
D. 3.
x

Câu 107. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.
C. m > −1.

D. m ≥ 0.

Câu 108. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC
√là
√ với đáy và S C = a 3. 3Thể

3
3
a 3
2a 6
a 6
a3 3
A.
.
B.

.
C.
.
D.
.
2
9
12
4
Câu 109. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).
D. (−∞; 6, 5).
Trang 8/10 Mã đề 1


Câu 110. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
C. Câu (II) sai.
D. Câu (I) sai.
sai.
Câu 111. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab

1
ab
.
B. √
.
C. √
.
D. √
.
A. 2
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 112. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.
C. y0 = x + ln x.


Câu 113. √Tìm giá trị lớn nhất của hàm số y = x + 3 + √6 − x
A. 2 + 3.
B. 3.
C. 3 2.

D. y0 = 1 + ln x.

D. 2 3.





x=t




Câu 114. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2

2
D. (x + 3) + (y + 1) + (z − 3) = .
C. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 115. Tính diện tích hình phẳng
giới hạn bởi các đường y = xe x , y = 0, x = 1.

1
3
3
A. .
B.
.
C. 1.
D. .
2
2
2
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
Câu 116. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
nhất Pmin của P√ = x + y.



2 11 − 3
9 11 + 19
9 11 − 19

18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
Câu 117. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
1 − 2n
n2 − 2
A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=
.

n
n
n
n2
(n + 1)2
5n + n2
5n − 3n2
Câu 118. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
2a
5a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
Câu 119. √
Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.

D. |z| = 10.
Câu 120. √
Tính mơ đun của số phức z biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.

D. |z| =


5.
Trang 9/10 Mã đề 1


Câu 121. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

Câu 122. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. −1 + sin x cos x.

D. Khối tứ diện đều.
D. 1 − sin 2x.

Câu 123. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B

thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
B.
A. 2a 2.
.
C.
.
D. a 2.
4
2
Câu 124. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 3}.
D. {5; 3}.
Câu 125. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a

√ thể tích của khối chóp 3S√
a 15
a3
a3 5
a3 15
.

B.
.
C.
.
D.
.
A.
25
5
3
25

Câu 126. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. (1; 2).
B. 2; .
;3 .
C.
D. [3; 4).
2
2
Câu 127. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
.

B. m =
.
C. m =
.
A. m =
4e + 2
4 − 2e
4 − 2e

1 − 2e
D. m =
.
4e + 2
q
2
Câu 128. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
!
!
!
1
2
2016
4x

. Tính tổng T = f
+f
+ ··· + f
Câu 129. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T =
.
C. T = 1008.
D. T = 2016.
2017
d = 60◦ . Đường chéo
Câu 130. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6

3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4.

5. A

6.


B

7. A

8.

B

9.
11.

C
D

D

10.

C
B

12.

13. A

14.

15. A


16. A

B
C

17.

B

18.

D

19.

B

21.

D

22.

B

23.

24.

25.


C

26.

B

27.

28.

B

29. A

30.

D

31. A

32.

D

33.

35.

D


36. A

37.

D

38.

39.
41.

40.

C
B

43. A
45.

B

49.

D
B

D
B


44.

D
C

48.

D

50.

D
B

54. A
B

56. A
58. A

59. A

60. A
B

62.

63.

C


64.

65.

C

66.

67.

C

68. A

69.

B

D

57. A
61.

B

42.

52.


53. A
55.

D

46.

47. A
51.

C

D

70.
1

C
D
B
C


71. A

72. A

73.

B


74.

75.

B

76. A

77.

B

78. A

79.

B

80.

81.

D

82.

83.

D


84.

85.

C

86. A

87.

C

88. A

89.

C

90.

91. A
C

94. A

95.

C


96. A

97.

C

98.

D
C

D
C

C

100.

99. A
B

B
B

D

104.

105.


D

106.

107.

D

102.

103.

109.

C

92.

93.

101.

C

D

108.

C
B


C

110. A

111.

C

112.

113.

C

114. A

115.

C

116. A

117.

C

118. A

D


119. A

120. A

121. A

122.

B

124.

B

123.

C

125. A
127.
129.

D
C

126.

C


128.

C

130.

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×