Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (637)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.06 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
Câu 2. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −5.
C. −6.
2

D. 6.

Câu 3. [12221d] Tính tổng tất cả các nghiệm của phương trình x + 1 = 2 log2 (2 x + 3) − log2 (2020 − 21−x )
A. 13.
B. 2020.
C. log2 2020.
D. log2 13.
2

Câu 4. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.


B. 7.
C. 5.
D. 8.



x = 1 + 3t




Câu 5. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
3t
x
=
−1
+
2t
x
=
−1
+
2t
x = 1 + 7t

















A. 
B. 
.
y = 1 + 4t .
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y=1+t
















z = 1 − 5t
z = 6 − 5t
z = −6 − 5t

z = 1 + 5t
Câu 6. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 7. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18
15
9
6
Câu 8. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√M + m


A. 16.
B. 8 2.
C. 8 3.
D. 7 3.

1
Câu 9. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.
C. 1.
D. −2.
Câu 10. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
5
8
7
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 11.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.

.
B.
.
C. .
4
12
4
Câu 12. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều.


3
D.
.
2
D. Khối 12 mặt đều.
Trang 1/10 Mã đề 1


Câu 13. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.
C. 3.
D. 7.
Câu 14. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?

A. 102.423.000.
B. 102.016.000.
C. 102.016.000.
D. 102.424.000.
Câu 15. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
8
24
48
24
Câu 16. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.

B. 8 m.
C. 16 m.
D. 24 m.
2
2n − 1
Câu 17. Tính lim 6
3n + n4
2
B. 0.
C. 1.
D. 2.
A. .
3
Câu 18. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.
C. 12.
D. 20.
Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
3
3
3
3
8a 3

a 3
8a 3
4a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 20. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. .
C. .
D. 9.
2
2

Câu 21. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .

B. 3.
C. .
D. −3.
3
3
Câu 22. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {2}.
C. {5; 2}.
D. {5}.
Câu 23. Tính lim
A. 1.
Câu 24. Tính lim
A. −∞.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 0.

C.

cos n + sin n
n2 + 1
B. 1.

C. +∞.

7
.
3


2
D. - .
3

D. 0.

Câu 25. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 26. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
Trang 2/10 Mã đề 1


(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 2.

C. 4.

D. 1.

Câu 27. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.

B. 12.
C. 20.
D. 8.
!
5 − 12x
Câu 28. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Câu 29. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.

C. 12.

D. 20.

Câu 30. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −9.
C. −5.
D. −15.
Câu 31. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?

Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
120.(1, 12)3
100.1, 03
A. m =
triệu.
B.
m
=
triệu.
(1, 12)3 − 1
3
100.(1, 01)3
(1, 01)3
triệu.
D.
m
=
triệu.
C. m =
(1, 01)3 − 1
3
Câu 32. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) xác định trên K.
D. f (x) liên tục trên K.

Câu 33. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.

2
Câu 34. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i. √
B. |z| = 5.
C. |z| = 2 5.
A. |z| = 5.

D. |z| = 5.

Câu 35. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −5.
C. x = −2.

D. x = −8.

Câu 36. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 5.
C. 0, 3.
D. 0, 2.
Câu 37. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.
C. 20.
D. 30.
Z 3
x
a

a
Câu 38. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 16.
C. P = −2.
D. P = 4.
Câu 39. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √


2a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
3
6

Trang 3/10 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.

Câu 40. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 41. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 1.
B. lim un = .
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
!

x+1
Câu 43. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
A. 2017.
B.
.
C.
.
D.
.
2017
2018
2018
Câu 44. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
Câu 42. [3-1132d] Cho dãy số (un ) với un =

3

Câu 45. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e.
C. e5 .

D. e3 .
1
Câu 46. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 47. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 10 năm.
D. 12 năm.
Câu 48. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.
1 − 2n
Câu 49. [1] Tính lim
bằng?
3n + 1
1
B. 1.
A. .
3


C. Chỉ có (II) đúng.

C.

2
.
3

D. Chỉ có (I) đúng.

2
D. − .
3

Câu 50. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 13.

D. 9.

Câu 51. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có vơ số.
D. Có một.
Câu 52. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.

B. lim+ f (x) = lim− f (x) = a.
C. lim f (x) = f (a).
x→a

x→a

x→a

x→a

x→a

D. lim+ f (x) = lim− f (x) = +∞.

Trang 4/10 Mã đề 1


x
Câu 53. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3
3
A. .
B.
.
C. 1.
D. .
2
2

2
x
y
Câu 54. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B.
.
C. 18.
D. 27.
2
Câu 55. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (III) sai.
sai.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 56. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.

C. m < 0 ∨ m > 4.
D. m < 0.


Câu 57. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
2
6
6
3
Câu 58. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 2.

B. .
C. 1.
D.
.
2
2
Câu 59. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 5 mặt.
D. 6 mặt.
0 0 0
d = 300 .
Câu 60. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của

√ khối lăng trụ đã cho.
3
3

3a
3
a
3
A. V = 3a3 3.
B. V =
.
C. V = 6a3 .
D. V =
.

2
2

Câu 61. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
B. 5.
C. 25.
D. .
A. 5.
5
Câu 62. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
24
6
12
Câu 63. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 5.

C. 3.
D. 1.
Câu 64. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
24
12
6

Trang 5/10 Mã đề 1


Câu 65. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − 2 .
C. − .
e
2e
Câu 66. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.
C. 8.
2
x − 5x + 6
Câu 67. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.
C. 5.
2
x −9
Câu 68. Tính lim
x→3 x − 3
A. 6.
B. 3.
C. +∞.

2

1
D. − .
e
D. 12.

D. −1.

D. −3.
2

Câu 69.
số f (x) = 2sin x + 2cos x lần lượt
√ là
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm √
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 2 2.
A. 2 và 3.
Câu 70. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.

Câu 71. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 4.

D. 108.
Câu 72. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. 2n3 lần.
C. n3 lần.
D. n3 lần.
Z 2
ln(x + 1)
Câu 73. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
D. 3.
Câu 74. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
D. √
.

A. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 75. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
1
n+1
A. √ .
B.
.
C. .
D.
.
n
n
n
n
Câu 76. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 9 mặt.
D. 3 mặt.
x−2
Câu 77. Tính lim
x→+∞ x + 3
2

A. 1.
B. 2.
C. −3.
D. − .
3
Z 1
6
2
3
Câu 78. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 4.

B. −1.

C. 6.

D. 2.

Câu 79. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
1
Câu 80. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3

nhất?
A. 2.
B. 1.
C. 4.
D. 3.
Trang 6/10 Mã đề 1


x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
A. 2 3.
B. 6.
C. 2 2.
D. 2.
Câu 81. [3-1214d] Cho hàm số y =

Câu 82. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 83. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 + i 3
−1 − i 3
.
B. P =

.
C. P = 2.
D. P = 2i.
A. P =
2
2
Câu 84. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 212 triệu.
C. 216 triệu.
D. 220 triệu.
Câu 85. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vơ nghiệm.
C. 1.
D. 2.
Câu 86. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =

3
3
4a 3
4a

2a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 87. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
2a3 3
4a3 3
a3 3
5a 3
.
B.
.
C.

.
D.
.
A.
3
3
3
2
Câu 88. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 89. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −2.
C. −4.
D. 2.
!4x
!2−x
2
3


Câu 90. Tập các số x thỏa mãn
3 # 2
"
!
#

"
!
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
3
5
5
a
1
Câu 91. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 1.
C. 7.
D. 4.
!2x−1
!2−x
3
3
Câu 92. Tập các số x thỏa mãn



5
5
A. (+∞; −∞).
B. [1; +∞).
C. [3; +∞).
D. (−∞; 1].
Trang 7/10 Mã đề 1


Câu 93. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B

√ C là
3
a3
a3 3
a 3
3
.
B.
.
C. a .
D.
.
A.
6
3
2

d = 30◦ , biết S BC là tam giác đều
Câu 94. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
9
13
26
Câu 95. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 26.

B. 2 13.
C.
.
D. 2.
13
2
Câu 96. Tìm giá trị nhỏ nhất của hàm số y = (x − 2x + 3)2 − 7
A. Không tồn tại.
B. −3.
C. −5.
D. −7.
Câu 97. Hàm số nào sau đây khơng có cực trị
1
A. y = x4 − 2x + 1.
B. y = x + .
x

C. y = x3 − 3x.

D. y =

x−2
.
2x + 1

2

Câu 98. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.

C. 1 − log3 2.

D. 3 − log2 3.

Câu 99. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 1.
D. T = e + .
A. T = e + 3.
B. T = 4 + .
e
e
x−1 y z+1
= =

Câu 100. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 101. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là 4.

C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.

Câu 102. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. Vô nghiệm.
Câu 103. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {3; 3}.

Câu 104. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 4.
C. 3.
2
2
2
1 + 2 + ··· + n
Câu 105. [3-1133d] Tính lim
n3
2
1
A. .
B. +∞.
C. .
3

3
Câu 106. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Hai cạnh.

D. {5; 3}.
D. 2.

D. 0.
D. Năm cạnh.

Câu 107. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 22.
Trang 8/10 Mã đề 1


Câu 108. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.
d = 120◦ .
Câu 109. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC

Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B.
.
C. 2a.
D. 3a.
2
Câu 110. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Nhị thập diện đều. D. Bát diện đều.
Câu 111. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.
D. −1 + sin x cos x.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 112. Tìm m để hàm số y =
x+m
A. 45.
B. 34.
C. 67.
D. 26.
Câu 113. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 10.

D. f 0 (0) = 1.
ln 10
Câu 114.
√ [4-1246d] Trong tất cả
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 3.
C. 2.
D. 1.
3
2
x
Câu 115. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 8
B. m = ±3.
C. m = ± 2.
D. m = ±1.
A. m = ± 3.

Câu 116. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x) − g(x)] = a − b.

x→+∞ g(x)
x→+∞
b
2

Câu 117. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 2.
C. 4.

D. 3.

Câu 118.
√cạnh bằng a


√ Thể tích của tứ diện đều
3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.

A.
12
6
2
4
Câu 119. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 17 tháng.
D. 15 tháng.
Câu 120. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.

C. 4.

D. 10.

Câu 121. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d song song với (P).
!
1
1
1

Câu 122. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. 2.
C. .
D. +∞.
2
2
Câu 123. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.
C. 27.
D. 10.
Trang 9/10 Mã đề 1


Câu 124. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Giảm đi n lần.
Câu 125. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối lập phương.

D. Khối tứ diện đều.
1 − xy
Câu 126. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.



9 11 + 19
2 11 − 3
9 11 − 19
18 11 − 29
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
9
21
Câu 127. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. √

.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2

Câu 128. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
3a 58
3a
a 38
A.
.
B.
.
C.
.
D.

.
29
29
29
29

Câu 129. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vơ số.
D. 62.
3
2
Câu 130. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2

A. 3 − 4 2.
B. −3 − 4 2.
C. −3 + 4 2.


D. 3 + 4 2.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

B

3.

D

4.

B

5.

6. A

B

D

9.

8. A
C


10.

11. A

12.

D

13.

B

14.

D

15.

B
B

16.

C

17.

18.


C

19. A

20.

C

21.

C

22.

D

23.

D

24.

D

25.

D

26. A


27. A

28.

C

30. A
32.
34.

D

38.
42.

50.

39.

C
B
D

B
D
C
B

41.


D

43.

D

45.

B

48.

C

37.
D

44.
46.

31.
35.
C

40.

C

33.


B

36.

29.

C
B

C

47.

D

49.

D

51.

B

52.

C

53.

C


54.

C

55.

C

56.

57.

B

58. A
60.

59.
61.

B

62.

D

D
B
C


63. A

64.

C

65.

66.

C

67.

68. A

69.
1

C
D
C


70. A

71.
C


72.
74.

73. A
75.

B

76.

D

B

77. A

78. A
80.

C

79. A
81. A

B
D

82.

83.


C

84.

B

85.

D

86.

B

87.

D

88.

89.

C

90. A
92.

B
C


91.

94.

D

93.

B

95.

C

96. A

97.

98. A

99. A

C
D

100.

B


101.

B

102.

B

103.

B

104.

B

105.

C

106.

B

107.

C

D


108.
110. A
112.

109.

B

111.

B

113. A

B

114.

C

115.

C

116.

C

117.


C

118. A

119. A

120. A

121.

122.

B

123. A

124.

D

125.

126.

B

127. A

128.


B

129.

130.

C

C

2

B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×