Tải bản đầy đủ (.docx) (11 trang)

Đề giải tích toán 12 có đáp án (1)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.02 MB, 11 trang )

ĐỀ MẪU CĨ ĐÁP ÁN

ƠN TẬP GIẢI TÍCH
TỐN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-------------------------

Họ tên thí sinh: .................................................................
Số báo danh: ......................................................................
Mã Đề: 001.
Câu 1. Cho hàm số

, đường tiệm cận ngang của đồ thị làm số là

A.
Đáp án đúng: D

B.

C.

Giải thích chi tiết: [Mức độ 1] Cho hàm số
A.
B.
Lời giải
FB tác giả: Nguyễn Việt
Do

C.

D.



, đường tiệm cận ngang của đồ thị làm số là
D.

nên đồ thị có tiệm cận ngang là

.

Vậy, đồ thị hàm số đã cho có tiệm cận ngang là
.
x−2
Câu 2. Tiệm cận đứng của đồ thị hàm số y=

1−x
A. x=1.
B. x=2.
Đáp án đúng: A
Câu 3. Phương trình

C. y=−1.

D. y=−2.

có bao nhiêu nghiệm?

A. .
Đáp án đúng: A

B. .


Câu 4. Cho hàm số
A.
.
Đáp án đúng: A

C.
,

B.

.

Giải thích chi tiết: Cho hàm số
A. 2. B.
. C.
. D. 4
Đáp án: B

.

của hàm số bằng bao nhiêu?
C.
.
,

D.

.

D.


.

của hàm số bằng bao nhiêu?

. Vậy

.

Câu 5.
Cho
A.



. Tính
B.

.
C.

D.
1


Đáp án đúng: C
Giải thích chi tiết: Cho
A.
B.
Lời giải




C.

. Tính

.

D.

Ta có:
Câu 6.
Cho hàm số
số đã cho là?

.
có đạo hàm

A.
.
Đáp án đúng: B

B.

Câu 7. Cho hai số thực dương

A.
Đáp án đúng: C
Câu 8. Cho số phức

A. 0 và 1.
Đáp án đúng: D

,
.

C.

. Số điểm cực tiểu của hàm

.

D.

. Rút gọn biểu thức

ta thu được

B.

C.

thỏa
B. 0 và

.

Giải thích chi tiết: Cho số phức thỏa

A. 0 và

. B. 0 và 1.
C. 1 và 1.
Hướng dẫn giải

.

. Tích của

D.

. Khi đó phần thực và phần ảo của lần lượt là
C. 1 và 1.
D. 1 và 0.
. Khi đó phần thực và phần ảo của

lần lượt

D. 1 và 0.

.
Vậy chọn đáp án D.
Câu 9.
Cho hàm số
A.
.
Đáp án đúng: A

B.

. Biết


, khi đó

.

C.

bằng:
.

Giải thích chi tiết: Phương pháp tự luận: Sử dụng phương pháp đổi biến số với
Sử dụng phương pháp từng phần với

D.

.
.

.

Phương pháp trắc nghiệm: Sử dụng phương pháp bảng với
2


Kết quả
suy ra

. Do đó

.


Câu 10. Tính tích phân

.

A. .
Đáp án đúng: D

B. .

C.

Câu 11. Cho hàm số

.

D.

. Tính tích phân

A. .
Đáp án đúng: C

B.

.

C.

.


.
.

D.

.

Giải thích chi tiết: Xét
Đặt
Với

,

Câu 12.
Cho hàm số

có bảng xét dấu đạo hàm như sau

Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng

B. Hàm số đồng biến trên khoảng

C. Hàm số nghịch biến trên khoảng
Đáp án đúng: C

D. Hàm số đồng biến trên khoảng

Câu 13. Hàm số

A.

là nguyên hàm của hàm số
.

B.

nào ?
.
3


C.
Đáp án đúng: C

.

D.

Giải thích chi tiết:
Câu 14. Cho các số thực

.
thỏa mãn



A. 43.
C. 24.
Đáp án đúng: A

Câu 15.

. Giá trị biểu thức

và chiều cao

. Thể tích

.

C.
.
Đáp án đúng: D
Giải thích chi tiết: Biết
A. -1 B. 3 C. 1 D. 2
Lời giải



.

của khối chóp đã cho được tính theo cơng

B.

.

D.

.


. Tính

Ta có:

bằng :

.

Câu 16. Tìm tập nghiệm của phương trình sau:
A.



B.
D. 17.

Cho khối chóp có diện tích đáy
thức nào dưới đây?
A.

.

.

.
B.

C.
.

Đáp án đúng: B

D.

Giải thích chi tiết:
Câu 17.
Cho hàm số bậc bốn

Số điểm cực trị của hàm số
A. 4
Đáp án đúng: C

.
.
. Vậy

có đạo hàm trên R. Đồ thị hàm số

.
như hình vẽ


B. 2

C. 3

D. 5
4



Câu 18. Một cơng ty bất động sản có 50 căn hộ cho thuê. Biết rằng mỗi căn hộ cho thuê với giá 2000000đ một
tháng thì mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100000đ thì sẽ có 2 căn hộ bỏ
trống. Hỏi muốn thu nhập cao nhất thì cơng ty phải cho thuê mỗi căn hộ với giá bao nhiêu 1 tháng?
A. 2100000đ.
B. 2225000đ.
C. 2200000đ.
D. 2250000đ.
Đáp án đúng: C
Giải thích chi tiết:
Cách giải:
Gọi y là tiền thu nhập và x là số lần tăng tiền ( x ∈ℤ ).
Ta có y=(2000000+100000 x ) ( 50 − 2 x )=−2. 105 x 2 +106 x+10 8.
Lập BBT của hàm số trên tập ℝ

Ta có y (2 )= y ( 3 )=101200000.
Dựa vào bảng biến thiên thì số tiền thu nhập nhiều nhất khi x=2 hoặc x=3 .
Vậy số tiền mỗi tháng là 2000000+2.100000=2200000
hoặc 2000000+3.100000=2300000.
Câu 19.
Cho phương trình
của m để phương trình có nghiệm thực?
A.
.
Đáp án đúng: B
Câu 20.

B.

(m là tham số). Có bao nhiêu giá trị nguyên dương
.


C.

.

D.

.

Trên tập hợp số phức, xét phương trình

là tham số thực). Có bao nhiêu

số ngun
?
A. 9.
Đáp án đúng: B

thỏa mãn

đề phương trình trên có hai nghiệm phức
B. 10.

C. 11.

D. 8.

5



Giải thích chi tiết: Trên tập hợp số phức, xét phương trình
thực). Có bao nhiêu số ngun

là tham số

đề phương trình trên có hai nghiệm phức

thỏa mãn

?
Câu 21. Với các số thực

,

dương thỏa mãn

. Tính tỉ số

.

A. .
B. .
C. .
D. .
Đáp án đúng: A
Câu 22.
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu chuyển động với vận tốc được biểu thị bằng đồ thị là đường cong
Parabol. Biết rằng sau phút thì xe đạt đến vận tốc cao nhất
m/phút và bắt đầu giảm tốc, đi được phút
thì xe chuyển động đều (hình vẽ).


Hỏi quãng đường xe đã đi được trong
A.
.
Đáp án đúng: D

phút đầu tiên kể từ lúc bắt đầu là bao nhiêu mét?

B.

.

C.

.

D.

.

Giải thích chi tiết: Giả sử trong 5 phút đầu vận tốc của ô tô được biểu diễn bởi phương trình
Theo giả thiết ta có:

.

.
Khi

ta có


m/phút. Suy ra trong 10 phút đầu xe ô tô chuyển động được quãng đường là
.

Câu 23.
Cho đồ thị
. Cho điểm
,
tích

. Gọi
thuộc

và điểm

là hình phẳng giới hạn bởi đồ thị
. Gọi

là thể tích khối trịn xoay khi cho tam giác
phần hình phẳng giới hạn bởi đồ thị

, đường thẳng

là thể tích khối trịn xoay khi cho
quay quanh trục

và đường thẳng

. Biết rằng

và trục


quay quanh trục
. Tính diện

.

6


A.
.
Đáp án đúng: B

B.

.

Giải thích chi tiết: Cho đồ thị
thẳng

và trục

,

. Tính diện tích

A. . B.
Lời giải

. C.


. Gọi

. Cho điểm

quay quanh trục

. D.

C. .

thuộc

và điểm

D.

là hình phẳng giới hạn bởi đồ thị
. Gọi

là thể tích khối trịn xoay khi cho tam giác
phần hình phẳng giới hạn bởi đồ thị

.
, đường

là thể tích khối trịn xoay khi cho
quay quanh trục

và đường thẳng


. Biết rằng

.

.

Ta có:
Giả sử

, ta có

.

7


Suy ra

, Phương trình đường thẳng



.

Diện tích cần tính là

.

Câu 24. Cho hàm số


xác định, liên tục trên

và có bảng biến thiên như sau:

- 43-10
Số giá trị nguyên thuộc

A.
.
Đáp án đúng: C

của tham số
B.

để phương trình

.

Giải thích chi tiết:

C.



.

nghiệm thực phân biệt
D.


.

, đây là phương trình hồnh độ giao điểm của hai đồ thị hàm số


là đường thẳng song song hoặc trùng với trục hồnh.
Số nghiệm của phương trình chính là số điểm chung của hai đồ thị này.
Dựa vào bảng biến thiên của hàm số
hoặc

hay

ta được
Câu 25. Cho
A.

giá trị

ta thấy phương trình có hai nghiệm thực phân biệt khi
hoặc

bằng

.

B.

C.
.
Đáp án đúng: D

Câu 26. Cho biểu thức:

Cho hàm số

.

D.
với
B.

là số nguyên thuộc đoạn

.

là số thực dương tùy ý,

A.
.
Đáp án đúng: A
Câu 27.

. Kết hợp với điều kiện

.

. Mệnh đề nào dưới đây đúng?

.

C.


.

D.

.

có đồ thị như hình dưới đây.

8


Số nghiệm phân biệt của phương trình
A. .
B. .
Đáp án đúng: B
Câu 28. : Cho hình phẳng
hình phẳng

giới hạn bởi các đường

D. .

,

. Quay

quanh trục hoành tạo nên một khối trịn xoay có thể tích bằng

A.

.
Đáp án đúng: D
Câu 29.
Cho số phức


C. .

B.

.

thỏa mãn

A. 1.
Đáp án đúng: C

C.

.

Hiệu phần thực và phần ảo của

B.

Giải thích chi tiết: [2D4-3.2-2] Cho số phức
của là

C. 0.
thỏa mãn


D.

.



D. 4.
Hiệu phần thực và phần ảo
9


A. 1. B. 0. C. 4. D.
Lời giải
FB tác giả: Nguyễn Minh Đức
*

phần thực bằng 1, phần ảo bằng 1.
Vậy, hiệu giữa phần thực và phần ảo bằng 0.
Câu 30. Cho số phức
A.

,

. Tính mơđun của số phức

.

C.
Đáp án đúng: C


B.
.

.

,

B.

Do

.

D.

Giải thích chi tiết: Cho số phức
A.
Lời giải

.

.

.

. Tính mơđun của số phức
C.

.


D.

.
.

.

Câu 31. Phương trình

có nghiệm là

A.

B.

.

C.
.
D.
Đáp án đúng: A
Câu 32. :Số phức z thoả mãn |z|+z=3+4i có phần thực bằng
A. −7.
Đáp án đúng: B

B.

Câu 33. Cho hai số phức
A.

.
Đáp án đúng: A


B. .

Giải thích chi tiết: Số phức

C. 3.

D. 4.

. Phần thực của số phức
C. .

bằng
D.

có phần thực là

Câu 34. Cho hàm số
Tính

.

.

.

, với


là các số thực và

.

.

A.

.

B.

.

C.

.

D.

.
10


Đáp án đúng: D
Giải thích chi tiết: Ta có:

.
Áp dụng tính chất này, ta có:

Câu 35. Cho số phức
A.
.
Đáp án đúng: C
Giải thích chi tiết: Ta có:

.
. Trong các điểm dưới đây, điểm nào biểu diễn số phức
B.

.

C.

.

. Suy ra điểm biểu diễn số phức
----HẾT---

?

D.
có tọa độ:

.
.

11




×