TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.
Câu 2. [2] Tổng các nghiệm của phương trình 2
A. −5.
B. 6.
x2 +2x
C. 8.
D. 12.
= 82−x là
C. 5.
D. −6.
Câu 3. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 4. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
.
C. 2.
D. 3.
A. 1.
B.
3
Câu 5. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 6. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 1.
2x + 1
x→+∞ x + 1
B. 1.
C. 2.
D. 0.
Câu 7. Tính giới hạn lim
1
.
D. −1.
2
Câu 8. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
1 − xy
Câu 9. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
2 11 − 3
9 11 − 19
18 11 − 29
9 11 + 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
21
9
x−1
Câu 10. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√
A. 2.
B. 2 2.
C. 6.
D. 2 3.
A. 2.
C.
Câu 11. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
Trang 1/10 Mã đề 1
x+2
Câu 12. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. Vô số.
C. 2.
D. 1.
2−n
bằng
Câu 13. Giá trị của giới hạn lim
n+1
A. 2.
B. 1.
C. −1.
D. 0.
Câu 14. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
D. f 0 (0) = 10.
ln 10
Câu 15. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
S
H
⊥
(ABCD),
S
A
=
a
5. Thể tích khối chóp √
S .ABCD là
√
3
3
3
2a 3
4a
4a 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 16. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log 14 x.
D. y = log √2 x.
C. y = log π4 x.
Câu 17. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là
√
√
3
a 2
a 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
4
12
6
d = 300 .
Câu 18. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho. 3 √
3
√
a 3
3a 3
A. V =
.
B. V = 6a3 .
C. V =
.
D. V = 3a3 3.
2
2
x+1
Câu 19. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
6
2
3
Câu 20. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.
C. 8.
D. 30.
Câu 21. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. 1.
C. .
D. 2.
2
2
Câu 22. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −2e2 .
D. −e2 .
Câu 23. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. −1.
B. 1.
C. 2.
D. .
2
Câu 25. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 24. [2-c] Cho hàm số f (x) =
Trang 2/10 Mã đề 1
Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
6
4
12
Câu 27. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m < 3.
D. m > 3.
Câu 28. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
Câu 29. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. (−∞; −3].
C. [1; +∞).
D. [−3; 1].
3
Câu 30. [1] Đạo hàm của làm số y = log x là
1
ln 10
.
B. y0 = .
A. y0 =
x
x
C.
2
1
.
10 ln x
D. y0 =
1
.
x ln 10
tan x + m
nghịch biến trên khoảng
Câu 31. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (1; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 32. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 33. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 32.
C. S = 24.
D. S = 22.
Câu 34. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Ba cạnh.
C. Hai cạnh.
D. Bốn cạnh.
Câu 35. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.
D. y0 = 1 − ln x.
C. y0 = ln x − 1.
Câu 36. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 1587 m.
D. 27 m.
Câu 37. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 38. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Trang 3/10 Mã đề 1
Câu 39. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
C. Khối 20 mặt đều.
D. Khối tứ diện đều.
Câu 40. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
C. 12.
D. 10.
C. 11 cạnh.
D. 9 cạnh.
Câu 41. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.
√
√
4n2 + 1 − n + 2
Câu 42. Tính lim
bằng
2n − 3
A. 1.
B. +∞.
3
.
D. 2.
2
Câu 43. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 84cm3 .
D. 48cm3 .
log(mx)
= 2 có nghiệm thực duy nhất
Câu 44. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0.
C.
Câu 45. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.
D. 1 + 2 sin 2x.
2
Câu 46. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
√4
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. |z| = 5.
√
Câu 47. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vô số.
D. 63.
1 3
Câu 48. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = 4.
D. m = −3.
Câu 49. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 216 triệu.
C. 210 triệu.
D. 220 triệu.
Câu 50. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
.
B. 34.
C. 5.
D. 68.
A.
17
Câu 51. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 6
a 5
a3 15
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 52. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 3.
C. 0, 4.
D. 0, 2.
Câu 53. Dãy số nào có giới hạn bằng 0?
!n
n3 − 3n
6
A. un =
.
B. un =
.
n+1
5
C. un = n − 4n.
2
!n
−2
D. un =
.
3
Trang 4/10 Mã đề 1
Câu 54. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là √
√
√
a3 3
a3 3
2a3 3
3
A. a 3.
B.
.
C.
.
D.
.
3
6
3
Câu 55. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
sai.
C. Câu (I) sai.
D. Câu (III) sai.
log 2x
Câu 56. [3-1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 2 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
2x ln 10
x ln 10
x3
D. y0 =
1 − 4 ln 2x
.
2x3 ln 10
2
Câu 57. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 3 − log2 3.
D. 2 − log2 3.
Câu 58. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (0; 2).
C. (2; +∞).
D. (−∞; 1).
Câu 59. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
6
9
18
Câu 60.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.
A.
Z
C.
1
dx = ln |x| + C, C là hằng số.
x
B.
Z
D.
0dx = C, C là hằng số.
xα dx =
xα+1
+ C, C là hằng số.
α+1
Câu 61. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3
! 3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 62. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 2.
B. 2 13.
C.
.
D. 26.
13
5
Câu 63. Tính lim
n+3
A. 3.
B. 1.
C. 0.
D. 2.
√
Câu 64. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. (1; 2).
B.
;3 .
C. 2; .
D. [3; 4).
2
2
Trang 5/10 Mã đề 1
!
1
1
1
Câu 65. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
B. 0.
C. 2.
D. 1.
A. .
2
Câu 66. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (I) và (II).
C. (I) và (III).
D. (II) và (III).
Câu 67. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
7
5
8
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
A.
3
3
3
Câu 68. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
log2 a
loga 2
x+1
Câu 69. Tính lim
bằng
x→+∞ 4x + 3
1
1
C. .
D. 1.
A. 3.
B. .
3
4
Câu 70. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 71. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).
C. (−∞; 2).
D. (−∞; 0) và (2; +∞).
Câu 72. [2] Cho hàm số f (x) = x ln x. Giá trị f (e) bằng
2
A. 2e + 1.
B. 3.
0
C. 2e.
Câu 73. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D.
2
.
e
D. 4 mặt.
Câu 74. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 75. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 76. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 77. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m < .
D. m ≤ .
4
4
4
4
Trang 6/10 Mã đề 1
Câu 78. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
13
5
9
A. −
.
B.
.
C. − .
D.
.
100
100
16
25
Câu 79. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B. a 6.
C.
.
D.
.
A.
3
6
2
√
Câu 80.
Xác
định
phần
ảo
của
số
phức
z
=
(
2 + 3i)2
√
√
A. 6 2.
B. −7.
C. −6 2.
D. 7.
Câu 81. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (1; 2).
D. (−∞; +∞).
Câu 82. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = 4 + .
C. T = e + 1.
D. T = e + 3.
e
e
Câu 83. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
12
24
6
Câu 84. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
C. Cả hai đều đúng.
D. Cả hai đều sai.
Câu 85. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C.
.
D. 18.
2
Câu 86. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B. 2a 2.
C. a 2.
D.
.
A.
2
4
!
!
!
4x
1
2
2016
Câu 87. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 2016.
C. T =
.
D. T = 1008.
2017
Câu 88. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vơ nghiệm.
B. 2.
C. 1.
D. 3.
Câu 89. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = 0.
2
3
7n − 2n + 1
Câu 90. Tính lim 3
3n + 2n2 + 1
2
A. - .
B. 1.
C. 0.
3
D. m = −3.
D.
7
.
3
Trang 7/10 Mã đề 1
x+3
Câu 91. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 2.
C. Vô số.
D. 3.
◦
◦
d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 92. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là
√
√
√
3
3
3
√
a
3
a
3
a
2
A. 2a2 2.
B.
.
C.
.
D.
.
12
24
24
Câu 93. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 94. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 5.
C. 0.
D. 9.
1
Câu 95. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 96. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (−1; 0).
Câu 97. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. −2.
B. − .
C. .
D. 2.
2
2
Câu 98. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
x
Câu 99. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
B.
.
C. 1.
D. .
A. .
2
2
2
x2 +x−2
Câu 100. [1] Tập xác định của hàm số y = 4
là
A. D = R \ {1; 2}.
B. D = (−2; 1).
C. D = R.
D. D = [2; 1].
3a
Câu 101. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
2a
a
A.
.
B. .
C.
.
D. .
3
4
3
3
Câu 102. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 8 mặt.
D. 6 mặt.
x = 1 + 3t
Câu 103. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi
z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x = −1 + 2t
x = −1 + 2t
x = 1 + 7t
x = 1 + 3t
C.
A.
.
B.
y = 1 + 4t .
y = −10 + 11t . D.
y = −10 + 11t .
y=1+t
z = −6 − 5t
z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
Trang 8/10 Mã đề 1
Câu 104. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 1.
C. 2.
D. 3.
2n2 − 1
Câu 105. Tính lim 6
3n + n4
2
A. .
B. 2.
C. 1.
D. 0.
3
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 106. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 16.
D. P = 4.
Câu 107. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 108. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 0.
C. 3.
D. 1.
Câu 109. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 10 năm.
D. 13 năm.
2n + 1
Câu 110. Tính giới hạn lim
3n + 2
3
2
1
A. .
B. .
C. 0.
D. .
2
3
2
2n − 3
Câu 111. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. −∞.
C. +∞.
D. 0.
Câu 112. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
4
2
8
!4x
!2−x
2
3
≤
là
Câu 113. Tập các số x thỏa mãn
3 #
2
"
!
"
!
#
2
2
2
2
A. − ; +∞ .
B. −∞; .
C.
; +∞ .
D. −∞; .
3
5
5
3
Câu 114. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 10.
C. 20.
D. 30.
C. 3.
D. 2.
Câu 115. Giá trị của lim (3x2 − 2x + 1)
A. +∞.
x→1
B. 1.
Câu 116. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 1200 cm2 .
un
Câu 117. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. 1.
D. +∞.
Trang 9/10 Mã đề 1
Câu 118. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 2020.
D. 13.
Câu 119. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m < 3.
D. m ≥ 3.
2
2
Câu 120. [3-c]
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x√lần lượt là
√ Giá trị nhỏ nhất √
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
A. 2 và 2 2.
Câu 121. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
Câu 122. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vô nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. {3; 3}.
D. 1 nghiệm.
Câu 123. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1728
23
1637
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
Câu 124.
√cạnh bằng a
√
√
√ Thể tích của tứ diện đều
3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
2
4
12
6
Câu 125. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng
√
√
√
c a2 + b2
a b2 + c2
b a2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Z 1
Câu 126. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4
0
B. 0.
C.
1
.
2
D. 1.
!
3n + 2
2
Câu 127. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 4.
C. 2.
D. 5.
Câu 128. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.
C. 8.
D. 30.
Câu 129. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x−2 y−2 z−3
=
=
.
B.
=
=
.
A.
2
2
2
2
3
4
x y−2 z−3
x y z−1
C. =
=
.
D. = =
.
2
3
−1
1 1
1
Câu 130. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2. A
C
3. A
5.
C
7. A
4.
C
6.
C
8. A
9. A
10.
11. A
12.
C
14.
C
C
13.
15.
16.
B
17.
D
D
18.
C
19. A
20.
21.
D
22.
23.
D
24.
25.
D
26.
27. A
C
B
D
B
D
28.
29.
D
31.
30.
C
B
B
B
34.
35.
B
36.
D
38.
C
39. A
40.
C
41. A
42. A
43.
C
D
32.
33.
37.
C
B
44.
46.
45. A
47.
B
B
48.
D
B
49. A
50. A
51. A
52.
B
54.
B
56.
B
B
53.
D
55. A
57.
D
58.
60.
D
61. A
62.
C
63.
64.
B
65.
66.
B
67. A
68.
D
69.
1
C
D
C
70.
72.
D
B
75. A
71.
D
74.
D
76. A
D
77.
79.
78. A
C
80. A
D
81.
D
82.
83. A
84. A
85.
D
86. A
87.
D
88.
89. A
B
90. A
91.
D
92.
D
93.
D
94.
D
95. A
96.
D
97. A
98.
C
C
99.
C
100.
101.
C
102. A
103.
C
104.
C
105.
D
106.
107.
D
108.
B
110.
B
112.
B
109.
B
111.
D
113. A
114. A
115.
117.
D
116. A
B
119.
D
121. A
123.
D
118.
B
120.
B
122.
C
124.
C
C
125.
B
126.
127.
B
128.
129.
D
D
130.
2
D
B