Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (310)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.41 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

n−1
Câu 1. Tính lim 2
n +2
A. 0.

B. 2.

C. 1.

D. 3.

Câu 2. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 3
a 2
a3 3
a3 3


A.
.
B.
.
C.
.
D.
.
12
12
4
6
3

Câu 3. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.

D. e5 .

Câu 4. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.
.

C. a.
D. .
2
2
3
3
2
Câu 5. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 6. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 8.
Câu 7. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.
1 − 2n
bằng?
Câu 8. [1] Tính lim
3n + 1
2
2
A. − .
B. .
3
3

C. 6.


D. 10.

C. 30.

D. 12.

C. 1.

D.

Câu 9. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
2

A. −1.

B. 6.

C. 2.


3

1
.
3
6

Z


3x + 1

. Tính

1

f (x)dx.
0

D. 4.


− 3m + 4 = 0 có nghiệm
3
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
π
Câu 11. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 2.
C. T = 3 3 + 1.
D. T = 2 3.


Câu 10. [12215d] Tìm m để phương trình 4 x+
9
B. m ≥ 0.
A. 0 ≤ m ≤ .
4

Câu 12. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.

1−x2

− 4.2 x+

1−x2

C. {3; 3}.

D. {4; 3}.

2

2n − 1
Câu 13. Tính lim 6
3n + n4
2
A. .
B. 0.
C. 2.

D. 1.
3
Câu 14. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. m ≤ 3.
D. −2 ≤ m ≤ 2.
Trang 1/11 Mã đề 1


Câu 15. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.016.000.
D. 102.424.000.
Câu 16. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 17. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).


B. (I) và (II).

C. Cả ba mệnh đề.

D. (I) và (III).

1
5

Câu 18. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R.
B. D = (1; +∞).
C. D = (−∞; 1).

D. D = R \ {1}.

x − 5x + 6
Câu 19. Tính giới hạn lim
x→2
x−2
A. 1.
B. 5.

D. −1.

2

C. 0.


Câu 20. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 3.
C. T = 4 + .
D. T = e + 1.
A. T = e + .
e
e
Câu 21. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vơ nghiệm.
D. 3.
x+2
Câu 22. Tính lim
bằng?
x→2
x
A. 3.
B. 2.
C. 0.
D. 1.
Câu 23. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

a2 5

11a2
a2 7
a2 2
A.
.
B.
.
C.
.
D.
.
16
32
8
4
Câu 24. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = (0; +∞).
C. D = R \ {0}.
D. D = R.
x+3
Câu 25. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. Vô số.
C. 2.
D. 1.
Câu 26. Hàm số y = x3 − 3x2 + 4 đồng biến trên:

A. (−∞; 0) và (2; +∞). B. (−∞; 2).

C. (0; +∞).

D. (0; 2).

Câu 27. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aα bα = (ab)α .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .
a
Trang 2/11 Mã đề 1


Câu 28. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. 3.
D. Vơ nghiệm.
Câu 29. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 9.
B. 8.
C. 3 3.
D. 27.
Câu 30. Giá trị của lim (3x2 − 2x + 1)
A. +∞.


x→1

B. 1.

C. 2.

D. 3.

1
Câu 31. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
.
C. 10a3 .
D. 20a3 .
A. 40a3 .
B.
3
Câu 33. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.

C. 2.
D. 1.
Câu 34. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.
log2 a
loga 2
!
x+1
Câu 35. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
.
B.
.
C. 2017.
D.
.
A.
2018
2017

2018
Câu 36. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −e2 .
C. −2e2 .
D. 2e2 .
Câu 37. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 12.

C. 10.

D. 8.

Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2

a2 + b2
2 a2 + b2
2x + 1
Câu 39. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. .
C. 1.
D. −1.
2

Câu 40. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. (1; 2).
B. [3; 4).
C.
;3 .
D. 2; .
2
2
Câu 41. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27

A.
.
B. 27.
C. 18.
D. 12.
2
[ = 60◦ , S A ⊥ (ABCD).
Câu 42. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 3
a3 2
a3 2
3
A.
.
B. a 3.
C.
.
D.
.
6
12
4
Trang 3/11 Mã đề 1


Câu 43. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.

B. 7 mặt.
C. 8 mặt.
D. 6 mặt.
1 + 2 + ··· + n
Câu 44. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 1.
D. lim un = 0.
Câu 45. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
23
9
13
.
B. − .
C. −
.
D.
.
A.
100
16
100
25

5
Câu 46. Tính lim
n+3
A. 1.
B. 0.
C. 3.
D. 2.
Câu 47. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C.
.
D. 7.
2
2
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 48. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
2
.
B. 2a 2.

C.
.
D.
.
A.
12
24
24
Câu 49. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (1; −3).
D. (2; 2).
Câu 50. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình tam giác.
C. Hình lăng trụ.

D. Hình lập phương.

Câu 51. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. (−∞; 1).

D. R.

Câu 52. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.

C. 3 mặt.

D. 4 mặt.

Câu 53. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
4
A. − .
B.
.
3
e

!n
1
D.
.
3

!n
5
C.
.
3


Câu 54. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã


√ cho là


πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
6
3
Câu 55. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một hoặc hai.
D. Có một.
x2
Câu 56. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1

1
A. M = e, m = 0.
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = .
e
e
!
1
1
1
Câu 57. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 2.
C. 0.
D. 1.
2
Trang 4/11 Mã đề 1


Câu 58. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.


D. Khối lập phương.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 59. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m = 0.
C. m ∈ R.
D. m , 0.
2mx + 1
1
Câu 60. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 0.
C. −2.
D. 1.

Câu 61. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A.
; +∞ .

B. −∞; .
C. −∞; − .
2
2
2
!4x
!2−x
2
3
Câu 62. Tập các số x thỏa mãn


#
" 3 ! 2
"
!
2
2
2
A. −∞; .
B.
; +∞ .
C. − ; +∞ .
3
5
3

!
1
D. − ; +∞ .

2

#
2
D. −∞; .
5

2

Câu 63. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.

D. 3 − log2 3.

Câu 64. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là


a3 3
a3
a3 3
.
B.
.
C. a3 .
D.

.
A.
2
6
3
Câu 65. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
8
7
5
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
A. (2; 0; 0).
B.
3
3
3
Câu 66. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối bát diện đều.


Câu 67. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
1
Câu 68. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 1.
C. 4.
D. 2.
un
Câu 69. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 70. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1

120.(1, 12)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 12) − 1
3
Trang 5/11 Mã đề 1


Câu 71. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

C. Câu (II) sai.

D. Khơng có câu nào
sai.

Câu 72. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. 0.


D. Không tồn tại.
tan x + m
Câu 73. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).

Câu 74. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 64.
D. 63.
Câu 75. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 3.
C. V = 5.
D. V = 6.
Câu 76. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d song song với (P).

Câu 77.
! định nào sau đây là sai?
Z Các khẳng
0

f (x)dx = f (x).

A.
Z
C.

f (x)dx = F(x) + C ⇒

Z
B.

Z

f (t)dt = F(t) + C. D.

Z

Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.


Câu 78. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.
Câu 79. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 1.
C. 2.
D. 7.



x=t




Câu 80. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .

B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
Câu 81. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
9
1
1
A. .
B.
.
C. .
D.
.
5
10
5

10
Trang 6/11 Mã đề 1


Câu 82. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.

C. 144.

D. 4.

Câu 83. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.

C. 4.

D. 2.

Câu 84. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.
C. 20.
D. 8.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 85. [3-1214d] Cho hàm số y =
x+2
tam giác

B thuộc (C), đoạn thẳng AB có độ dài bằng

√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 2.
D. 6.
Câu 86. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 87. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
2−n
Câu 88. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 1.

C. Khối 12 mặt đều.

D. Khối lập phương.

C. 0.

D. −1.


Câu 89. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
[ = 60◦ , S O
Câu 90. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng

√ với mặt đáy và S O = a. Khoảng cách từ A đến (S

a 57
a 57
2a 57
C.
.
B. a 57.
.
D.
.
A.
19
19
17
Câu 91. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
n2 + n + 1
n2 − 3n

A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
n
n
n
5n − 3n2
5n + n2
(n + 1)2
n2


4n2 + 1 − n + 2
bằng
Câu 92. Tính lim
2n − 3
3
A. 2.
B. +∞.

C. .
D. 1.
2
Câu 93. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 3.
B. 2.
C. 1.
D.
.
3
Câu 94. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 387 m.
D. 1587 m.

Câu 95. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 24.
D. 22.
Trang 7/11 Mã đề 1


Câu 96. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
1
C. lim k = 0.
n

B. lim un = c (un = c là hằng số).
1
D. lim = 0.
n

Câu 101.
√ 0 có nghĩa
√ Biểu thức nào sau đây không
−3
−1.
B. (− 2) .
A.

C. (−1)−1 .



Câu 97. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a3
a3 3
a 3
3
.
B. a 3.
C.
.
D.
.
A.
12
4
3
Câu 98. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3
a3 15
a3 5
.

B.
.
C.
.
D.
.
A.
25
5
3
25
Câu 99. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
B. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.
D. f (x) xác định trên K.

Câu 100. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
D. 0−1 .
2

2

Câu 102.
f (x) = 2sin x + 2cos x √
lần lượt là

√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số √
A. 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.
Câu 103. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
f (x)dx = f (x).
C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
3
2
Câu 104. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
A. −3 + 4 2.
B. −3 − 4 2.
C. 3 + 4 2.


D. 3 − 4 2.

Câu 105. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞
f (x) a
= .
B. lim [ f (x) − g(x)] = a − b.
A. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

a
1
Câu 106. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 4.
C. 7.
D. 1.
Câu 107. Tính mơ đun của số phức√z biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.

D. |z| =



5.

Câu 108. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



20 3
14 3
A.
.
B. 8 3.
C. 6 3.
D.
.
3
3
Câu 109. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.
C. 30.
D. 8.
Trang 8/11 Mã đề 1


Câu 110. Gọi F(x) là một nguyên hàm của hàm y =

A.

1
.
9

B.

1
.
3

ln x p 2
1
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
C. .
D. .
3
9

0 0 0 0
Câu 111.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √

a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
3
2
7
2
Câu 112. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng BD và√S C bằng



a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.

.
2
3
6
x+1
bằng
Câu 113. Tính lim
x→+∞ 4x + 3
1
1
C. .
D. 3.
A. 1.
B. .
3
4
1
Câu 114. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 2.
C. 3.
D. 1.
1
Câu 115. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.

D. 2 < m ≤ 3.

Câu 116. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; −3).
Câu 117. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (1; 2).
Câu 118. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − 2 .
C. −e.
e
e
Câu 119. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = −3.
√3
4
Câu 120. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
5

A. a 3 .
B. a 3 .
C. a 8 .

D. (−∞; +∞).

D. −

1
.
2e

D. m = 0.
7

D. a 3 .

Câu 121. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 24.
D. 15, 36.
Câu 122. Cho hàm số y = x3 − 2x2 + x + 1.! Mệnh đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3!
!

1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3
Câu 123. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.

C. 6.

D. 10.
Trang 9/11 Mã đề 1


Câu 124. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
Câu 125. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 9 cạnh.
C. 12 cạnh.
D. 10 cạnh.
Z 1
Câu 126. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

1
1
.
C. 0.
D. .
2
4
Câu 127. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

2a3 3
a3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 128. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.

B. Bốn mặt.
C. Ba mặt.
D. Năm mặt.
A. 1.

B.

Câu 129. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
A. y0 =
.
B.
.
C. y0 =
.
x ln 10
10 ln x
x
Câu 130. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Hai cạnh.

1
D. y0 = .
x
D. Năm cạnh.


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3.
5.

D

4.

B

6.

7.

D

9.

D


10.

B

D

14. A
D

16. A

B

19.

D

21. A
23.

18.

B

20.

B

22.


B

24.

C

25. A

26. A

27. A

28.

29.

C

D
B

30.

31. A

32.

33. A


34.

35. A

36.

37.

C

12.

15.
17.

B

8. A

11. A
13.

C

B

C
D
C
B


38. A

39. A

40.

41.

42.

C

43. A
45.

C

C

D

44.

B

46.

B


47.

B

48.

49.

B

50.

51.

B

52.

D

54.

D

53.

D

55.
59.


D
B

61.

D

58.

B

60.

B

62.

63. A
65.

B

56. A

C

57.

D


C

64. A
66. A

C

67. A

68.
1

B


69.

70.

C
D

71.

72.

73. A

74. A


75. A

76.

77.
81.

80.

C
B

B
B
C

82.
C

83.

C

78. A

B

79.


B

84.

85. A
87.

D

B

86.

D

88.

D

89.

B

90. A

91.

B

92.


93.

B

94.

D
B

95.

D

96. A

97.

D

98.

D

100.

D

102.


D

C

99.
101.
103.

D
B

104. A

105. A

106.

C
C

107.

B

108.

109.

B


110.

D

112.

D

114.

D

111. A
113.

C

115.

D

116.

117.

D

118.

119.


B

D

120. A

121.
123.

B

D

122. A
124.

C

125.

D

126.

127.

D

128.


129. A

130.

2

D
B
C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×