TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1.
Z Trong các khẳng định sau, khẳng định nào sai? Z
xα+1
A.
0dx = C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1
Z
Z
1
C.
dx = x + C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
x
Câu 2. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Câu (I) sai.
C. Không có câu nào D. Câu (II) sai.
sai.
Câu 3. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 4. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. 6.
C. .
D. 9.
A. .
2
2
Câu 5. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.
C. 10.
D. 27.
Câu 6. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 7. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 6
a3 3
a 6
A.
.
B.
.
C.
.
D.
.
24
8
48
24
Câu 8. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.
D. 5 mặt.
√
x2 + 3x + 5
Câu 9. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. .
D. 0.
4
4
x+1
Câu 10. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.
D. 1.
4
3
Câu 11. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
D. V = S h.
3
2
Trang 1/11 Mã đề 1
x2 − 12x + 35
Câu 12. Tính lim
x→5
25 − 5x
2
2
A. − .
B. +∞.
C. .
5
5
Câu 13. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 6 mặt.
2n + 1
Câu 14. Tìm giới hạn lim
n+1
A. 1.
B. 0.
C. 2.
D. −∞.
D. 4 mặt.
D. 3.
Câu 15. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≤ 0.
C. m ≥ 0.
D. − < m < 0.
4
4
Câu 16. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. −2.
D. 4.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 17. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. (−3; +∞).
Câu 18. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 8%.
D. 0, 6%.
Câu 19. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 16π.
D. 8π.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 20. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 7.
C. 2.
D. 1.
Câu 21. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
1
Câu 22. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 23. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (1; −3).
D. (−1; −7).
√
Câu 24. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
3a 58
3a 38
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 25. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Trang 2/11 Mã đề 1
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
v! n
un
= +∞.
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
1
2mx + 1
Câu 26. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 0.
C. −2.
D. 1.
Câu 27. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B.
.
C.
.
D. a 6.
A.
3
2
6
Câu 28. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = 4 + .
C. T = e + 3.
D. T = e + 1.
e
e
1 − 2n
bằng?
Câu 29. [1] Tính lim
3n + 1
1
2
2
A. .
B. .
C. 1.
D. − .
3
3
3
4
2
Câu 30. Tìm m để hàm số y = x − 2(m + 1)x − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.
C. m > 1.
D. m > −1.
!2x−1
!2−x
3
3
Câu 31. Tập các số x thỏa mãn
≤
là
5
5
A. (−∞; 1].
B. [3; +∞).
C. [1; +∞).
D. (+∞; −∞).
Câu 32. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 33. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (0; 2).
log2 240 log2 15
−
+ log2 1 bằng
Câu 34. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 4.
B. 3.
C. 1.
D. (−∞; 1).
D. −8.
Câu 35. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 2
A. m = ±1.
B. m = ± 2.
C. m = ± 3.
D. m = ±3.
3
2
x
Câu 36. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 6.
C. 10.
D. 8.
!
!
!
x
4
1
2
2016
Câu 37. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2017.
C. T = 1008.
D. T = 2016.
2017
√
Câu 38.
Xác
định
phần
ảo
của
số
phức
z
=
(
2 + 3i)2
√
√
A. 6 2.
B. 7.
C. −7.
D. −6 2.
Trang 3/11 Mã đề 1
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 2.
C. 0.
D. Vô số.
Câu 39. [4] Xét hàm số f (t) =
Câu 40. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
C. 1.
A. 2.
B. .
2
Câu 41. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. 1.
D.
ln 2
.
2
D. −2 + 2 ln 2.
Câu 42. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 5}.
D. {3; 4}.
√
Câu 43. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. Vô số.
D. 62.
Câu 44. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 45. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 46. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 47. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5}.
C. {5; 2}.
D. {2}.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 48. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0.
Câu 49. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 26.
B. 2.
C.
.
D. 2 13.
13
√
Câu 50. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là
√
√
3
3
√
a3
a
3
a
3
A.
C.
.
B. a3 3.
.
D.
.
4
12
3
Câu 51. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (1; +∞).
C. (−∞; 1).
D. (−∞; −1).
Câu 52. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 3.
B. m = ±3.
C. m = ±1.
D. m = ± 2.
Câu 53. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Trang 4/11 Mã đề 1
Z
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
B. Nếu
f (x)dx =
Z
Câu 54. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
!
1
1
1
+
+ ··· +
Câu 55. Tính lim
1.2 2.3
n(n + 1)
3
A. .
B. 0.
C. 1.
D. 2.
2
Câu 56. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
1
C. lim √ = 0.
n
B. lim un = c (Với un = c là hằng số).
D. lim qn = 1 với |q| > 1.
Câu 57. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 2.
B. 1.
C. −1.
D. .
2
1
Câu 59. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
Câu 58. [2-c] Cho hàm số f (x) =
Câu 60. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 61. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
6
24
12
12 + 22 + · · · + n2
n3
2
B. .
3
Câu 62. [3-1133d] Tính lim
A. +∞.
Câu 63. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
A. 0 .
B.
−1.
1
.
3
C. 0.
D.
C. (−1)−1 .
√
D. (− 2)0 .
Câu 64.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
( f (x) + g(x))dx =
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx +
Z
g(x)dx.
B.
Z
f (x)dx −
Z
g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Trang 5/11 Mã đề 1
Câu 65. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. .
B. 1.
C. .
D.
.
2
2
2
x2 − 9
Câu 66. Tính lim
x→3 x − 3
A. +∞.
B. 3.
C. 6.
D. −3.
Câu 67. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 2.
C. 1.
D. −1.
Câu 68. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
√3
Câu 69. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. 3.
B. −3.
C. .
D. − .
3
3
Câu 70. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
10
20
20
40
C50
.(3)40
C50
.(3)30
C50
.(3)20
C50
.(3)10
.
B.
.
C.
.
D.
.
A.
450
450
450
450
Câu 71. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].
D. [6, 5; +∞).
Câu 72. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
D. .
A. 2.
B. −2.
C. − .
2
2
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Câu 74. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. a.
B.
.
C. .
D. .
2
3
2
Câu 75. Dãy số nào có giới hạn bằng 0?
!n
!n
n3 − 3n
−2
6
2
A. un = n − 4n.
B. un =
.
C. un =
.
D. un =
.
n+1
3
5
Câu 76. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 77.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.
f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).
f (t)dt = F(t) + C. B.
Z
Z
D.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.
Câu 78. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 24 m.
D. 12 m.
Trang 6/11 Mã đề 1
Câu 79. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 80. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.
C. 6.
D. 10.
Câu 81. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
4
8
2
Câu 82. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.
C. 30.
π
x
Câu 83. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
√
2 π4
3 π6
A.
e .
B. 1.
C.
e .
2
2
D. 8.
D.
1 π3
e .
2
Câu 84. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aαβ = (aα )β .
B. β = a β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
a
Câu 85. Hàm số y =
A. x = 1.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
C. x = 0.
D. x = 2.
Câu 86. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Thập nhị diện đều. C. Tứ diện đều.
D. Bát diện đều.
Câu 87. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.
D. 8.
C. 4.
Câu 88.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
B. 1.
C. 2.
D. 10.
A. 2.
0 0 0 0
0
Câu 89.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
3
7
[ = 60◦ , S O
Câu 90. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19
Câu 91. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 9 cạnh.
C. 12 cạnh.
D. 10 cạnh.
Câu 92. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
là
cùng vng góc với đáy, S C = a 3. Thể tích khối chóp S .ABCD
√
√
3
3
a
a
3
a3 3
3
A. a .
B.
.
C.
.
D.
.
3
9
3
Câu 93. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
2
−2
C. M = e − 2; m = e + 2.
D. M = e−2 + 2; m = 1.
Câu 94. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 1.
D. 0.
Trang 7/11 Mã đề 1
1
1
1
Câu 95. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
C. .
A. 2.
B. .
2
2
!
D. +∞.
Câu 96. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
x+2
Câu 97. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. 2.
D. Vơ số.
Câu 98. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 99. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
2
1
1
B.
.
C. .
D.
.
A. .
5
10
5
10
Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√ là
√
3
3
3
3
a 3
4a 3
8a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
x−2
Câu 101. Tính lim
x→+∞ x + 3
2
C. 2.
D. −3.
A. 1.
B. − .
3
Câu 102. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −12.
C. −9.
D. −5.
Câu 103. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
2a
5a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
Câu 104. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B. a 3.
C. a 2.
D.
.
3
2
Câu 105. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = −18.
Trang 8/11 Mã đề 1
Câu 106. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 107. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 30.
C. 12.
D. 20.
Câu 108. [1224d] Tìm tham số thực m để phương trình
x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≤ .
D. m ≥ .
4
4
4
4
0 0 0
d = 300 .
Câu 109. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √
√
√
a3 3
3a3 3
3
3
A. V = 3a 3.
B. V = 6a .
C. V =
.
D. V =
.
2
2
Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
10a 3
A. 10a3 .
B.
.
C. 40a3 .
D. 20a3 .
3
1 − xy
Câu 111. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.
√
√
√
9 11 + 19
9 11 − 19
2 11 − 3
18 11 − 29
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
9
3
21
Câu 112. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 3, 55.
D. 24.
log23
Câu 113. √
Tính mô đun của số phức√z biết (1 + 2i)z2 = 3 + 4i. √
4
B. |z| = 5.
C. |z| = 2 5.
A. |z| = 5.
D. |z| = 5.
Câu 114. Giá trị của lim (3x − 2x + 1)
x→1
A. +∞.
B. 1.
C. 2.
D. 3.
Z 1
Câu 115. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
2
0
1
1
.
C. .
D. 1.
2
4
Câu 116. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
2
2
2
2
2
a +b
2 a +b
a +b
a + b2
A. 0.
B.
Câu 117. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.
C. 12.
D. 30.
Câu 118. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 27.
C. 12.
D.
.
2
Câu 119. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. 2n3 lần.
D. n3 lần.
Trang 9/11 Mã đề 1
Câu 120. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e
C. S = 22.
D. S = 135.
[ = 60◦ , S A ⊥ (ABCD).
Câu 121. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3
√
a 2
a 2
a 3
.
B.
.
C.
.
D. a3 3.
A.
6
12
4
Câu 122. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.
C. 20.
D. 30.
√
√
Câu 123. Phần thực và√phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l
√
A. Phần thực là 1√− 2, phần ảo là − √3.
B. Phần thực là √2 − 1, phần ảo là √3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 124. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.
D. m > 0.
Câu 125. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. 1.
D. e2016 .
Câu 126. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
= .
C. lim [ f (x)g(x)] = ab.
D. lim
x→+∞
x→+∞ g(x)
b
Câu 127. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.
1
Câu 128. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
6
Câu 129. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x + 1
Z 1
f (x)dx.
0
A. 4.
B. 2.
C. 6.
D. −1.
Câu 130. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. .
C. 5.
D. 7.
2
2
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2.
C
3. A
4.
C
5. A
6. A
7. A
8. A
9. A
10. A
11. A
C
13.
15. A
12.
C
14.
C
16.
C
17.
B
18. A
20.
B
21.
22.
D
23. A
24.
B
25.
26.
B
27.
28.
32.
D
C
29.
C
30.
D
D
B
D
31.
C
33.
C
34.
D
35. A
36.
D
37.
38. A
39.
40. A
41. A
C
B
42.
C
43.
D
44.
C
45.
D
46.
48.
D
47.
B
49.
50.
D
51. A
52.
D
53.
54. A
C
D
59. A
B
61.
62.
66.
B
57.
D
60. A
64.
C
55.
56.
58.
B
D
D
63. A
B
65.
B
67. A
C
68. A
69.
1
C
70.
72.
D
73. A
B
74. A
C
B
80. A
77.
B
79.
B
81. A
82.
B
83. A
84.
B
85. A
86.
B
87.
88.
B
89.
B
D
95. A
96.
D
97.
C
99.
100. A
102.
C
D
93. A
94.
98.
B
91.
C
90.
92.
C
75.
76.
78.
C
71.
C
B
101. A
103. A
B
104.
D
105.
106.
D
107.
108.
C
D
109.
C
110.
D
D
111.
112. A
C
113.
B
B
114.
C
115.
116.
C
117. A
118. A
119.
120. A
121.
C
123.
C
122.
D
124. A
126.
D
128. A
130.
125.
B
127.
B
129. A
B
2
D