Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
1
Câu 1. [1] Giá trị của biểu thức log √3
bằng
10
1
A. − .
B. −3.
C. 3.
3
Câu 2. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √
√
a3 3
a3 3
2a3 3
.
B.
.
C.
.
A.
3
6
3
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 3. Tìm m để hàm số y =
x+m
A. 34.
B. 67.
C. 26.
1
.
3
⊥ (ABCD). Mặt bên (S CD)
D.
√
D. a3 3.
D. 45.
Câu 4. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó là:
A. 27cm3 .
B. 46cm3 .
C. 72cm3 .
D. 64cm3 .
Câu 5. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
C. 24.
D. 144.
2x + 1
Câu 6. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. −1.
D. 2.
2
Câu 7. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
C. 3.
D. 2e.
A. 2e + 1.
B. .
e
Câu 8. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|
√
√
√
√
12 17
.
A. 68.
B. 5.
C. 34.
D.
17
Câu 9. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
Câu 10. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2
√
A. −3 − 4 2.
B. 3 + 4 2.
C. −3 + 4 2.
√
D. 3 − 4 2.
Câu 11. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Hai mặt.
D. Bốn mặt.
Câu 12. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
3
A. a .
B.
.
C.
.
D.
.
24
6
12
Câu 13. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 3.
C. 0, 2.
D. 0, 4.
Z 2
ln(x + 1)
Câu 14. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. −3.
C. 3.
D. 0.
Trang 1/10 Mã đề 1
Câu 15. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 2.
D. 1.
q
2
Câu 16. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 4].
Câu 17. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =
4e + 2
4e + 2
4 − 2e
Câu 18. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.
C. 20.
D. m =
1 + 2e
.
4 − 2e
D. 8.
Câu 19. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
√
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 20. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
t
9
Câu 21. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. 1.
D. Vô số.
Câu 22. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 23. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Câu (II) sai.
C. Khơng có câu nào D. Câu (III) sai.
sai.
Câu 24. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. Vơ số.
D. 2.
Câu 25. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m > 3.
D. m < 3.
Câu 26. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.
C. Khối bát diện đều.
Câu 27. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − .
C. − .
A. − 2 .
e
2e
e
D. Khối tứ diện đều.
D. −e.
Trang 2/10 Mã đề 1
Câu 28. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.
D. Hình lập phương.
d = 300 .
Câu 29. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.
√
3a3 3
a3 3
3
3
.
B. V = 6a .
C. V = 3a 3.
D. V =
.
A. V =
2
2
Câu 30. Tính lim
x→1
A. 0.
x3 − 1
x−1
B. −∞.
C. +∞.
D. 3.
Câu 31. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
−2
C. M = e + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 32. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
Câu 33. Tính lim
A. 1.
2n − 3
bằng
+ 3n + 1
B. −∞.
2n2
C. {4; 3}.
D. {5; 3}.
C. +∞.
D. 0.
Câu 34. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a
C. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a
D. f (x) có giới hạn hữu hạn khi x → a.
Câu 35. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
x2 − 5x + 6
x→2
x−2
B. 5.
Câu 36. Tính giới hạn lim
A. −1.
C. 0.
D. 1.
Câu 37. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (−1; 0).
D. (0; 1).
Câu 38. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 39. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −9.
C. −5.
D. −15.
Câu 40. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 41. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2
log2 a
Câu 42. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = 0.
D. m = −3.
Trang 3/10 Mã đề 1
[ = 60◦ , S O
Câu 43. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√
a 57
a 57
2a 57
C.
.
B. a 57.
.
D.
.
A.
19
19
17
Câu 44. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 45. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.
B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.
D. Chỉ có (I) đúng.
log(mx)
Câu 46. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m ≤ 0.
Câu 47. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
5
Câu 48. Tính lim
n+3
A. 0.
B. 3.
C. 1.
D. 2.
Câu 49. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Câu 50. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.
C. 6.
D. 12.
Câu 51. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
Câu 52. [1] Đạo hàm của làm số y = log x là
1
ln 10
.
B. y0 = .
A. y0 =
x
x
1
1
.
D. y0 =
.
10 ln x
x ln 10
ln x p 2
1
Câu 53. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
3
9
9
3
√
Câu 54. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
3
√
a3
a3 3
a
3
A.
.
B.
.
C. a3 3.
D.
.
4
12
3
Câu 55. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 9 mặt.
C. 7 mặt.
D. 6 mặt.
C.
Trang 4/10 Mã đề 1
Câu 56. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 57. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 58. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.
Câu 59. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. Cả ba đáp án trên.
Câu 60. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 61. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
C. 8.
D. 5.
Câu 62. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
log 2x
là
x2
1 − 4 ln 2x
1 − 2 ln 2x
B. y0 =
.
C. y0 = 3
.
3
2x ln 10
x ln 10
D. f 0 (0) =
1
.
ln 10
Câu 63. [3-1229d] Đạo hàm của hàm số y =
A. y0 =
2x3
1
.
ln 10
D. y0 =
1 − 2 log 2x
.
x3
Câu 64. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
A.
.
B.
.
C. a 2.
D. 2a 2.
2
4
Câu 65. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. 8π.
D. V = 4π.
Z 1
Câu 66. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4
0
B. 1.
C.
1
.
2
D. 0.
Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
a3
a3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Câu 68. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 3, 5 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
Trang 5/10 Mã đề 1
Câu 69. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A. 3.
.
B. 1.
C. 2.
D.
3
Câu 70. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.
C. y0 = ln x − 1.
D. y0 = 1 − ln x.
2
Câu 71. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. 3 .
B. 3 .
C. √ .
2e
e
2 e
D.
1
.
e2
Câu 72. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√ của hàm số. Khi đó tổng
√M + m
A. 7 3.
B. 8 3.
C. 8 2.
D. 16.
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 73. [2-c] Cho hàm số f (x) = x
9 +3
1
A. −1.
B. 1.
C. .
D. 2.
2
1
Câu 74. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (1; +∞).
D. D = (−∞; 1).
Câu 75. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.
D. Một mặt.
Câu 76. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A.
; +∞ .
B. − ; +∞ .
C. −∞; .
2
2
2
!
1
D. −∞; − .
2
Câu 77. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 78. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Không thay đổi.
Câu 79. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e2 .
D. 2e4 .
!
1
1
1
+
+ ··· +
Câu 80. Tính lim
1.2 2.3
n(n + 1)
3
A. 1.
B. .
C. 2.
D. 0.
2
Câu 81. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt
√
2
2
2
a 7
a 5
11a
a2 2
A.
.
B.
.
C.
.
D.
.
8
16
32
4
Câu 82.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
xα+1
A.
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1
Z x
Z
C.
0dx = C, C là hằng số.
D.
dx = x + C, C là hằng số.
Trang 6/10 Mã đề 1
Câu 83. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
A.
c+2
c+3
c+1
D.
3b + 2ac
.
c+2
Câu 84. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
√
−1 + i 3
−1 − i 3
A. P = 2.
B. P = 2i.
C. P =
.
D. P =
.
2
2
Câu 85. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m ≥ 0.
D. m > −1.
Câu 86. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 87. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 6
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
48
48
24
16
d = 60◦ . Đường chéo
Câu 88. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
3
3
3
√
4a
6
2a
6
a
6
A. a3 6.
B.
.
C.
.
D.
.
3
3
3
2
Câu 89. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √4
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.
D. |z| =
√
5.
Câu 90. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là 1.
Câu 91. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = [2; 1].
C. D = (−2; 1).
2
D. D = R.
Câu 92. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 93. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
Câu 94. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
C. 9 cạnh.
C. Khối tứ diện đều.
π
x
Câu 95. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
1 π3
2 π4
A. e .
B. 1.
C.
e .
2
2
D. 10 cạnh.
D. Khối 12 mặt đều.
√
3 π6
D.
e .
2
Câu 96. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.
1
Câu 97. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey + 1.
B. xy0 = ey − 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Trang 7/10 Mã đề 1
Câu 98. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 99. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
B. 1.
C. .
D.
.
A. .
2
2
2
Câu 100. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 22.
C. 24.
D. 21.
Câu 101. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
4
8
Câu 102. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
2a
5a
.
B.
.
C. .
D.
.
A.
9
9
9
9
Câu 103. Tính thể tích khối lập √
phương biết tổng diện tích tất cả các mặt bằng 18.
A. 27.
B. 3 3.
C. 9.
D. 8.
2n + 1
Câu 104. Tính giới hạn lim
3n + 2
1
2
3
A. .
B. .
C. .
D. 0.
2
3
2
Câu 105. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 11 năm.
D. 13 năm.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 106. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−3; +∞).
D. (−∞; −3).
Câu 107. [4-1246d] Trong tất cả các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 2.
B. 1.
C. 3.
D. 5.
Câu 108. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 0.
D. 3.
Câu 109. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
6
4
12
7n2 − 2n3 + 1
Câu 110. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 0.
C. - .
D. 1.
3
3
Trang 8/10 Mã đề 1
1 − 2n
Câu 111. [1] Tính lim
bằng?
3n + 1
2
2
A. − .
B. 1.
C. .
D.
3
3
Câu 112. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
C. aα+β = aα .aβ .
D.
A. aαβ = (aα )β .
B. β = a β .
a
Câu 113. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Hai cạnh.
C. Bốn cạnh.
D.
1
.
3
aα bα = (ab)α .
Năm cạnh.
Câu 114. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n3 lần.
C. n lần.
D. 3n3 lần.
2
2
sin x
Câu 115. [3-c]
và giá trị lớn nhất của hàm
+ 2cos x lần lượt là
√ số f (x) = 2
√ Giá trị nhỏ nhất √
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
A. 2 và 2 2.
√
2
Câu 116.
√ Xác định phần ảo của số√phức z = ( 2 + 3i)
A. 6 2.
B. −6 2.
C. 7.
D. −7.
cos n + sin n
Câu 117. Tính lim
n2 + 1
A. 0.
B. +∞.
C. −∞.
D. 1.
Câu 118. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 119. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
A. 2.
B. 26.
C. 2 13.
D.
.
13
Câu 120. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
2mx + 1
1
Câu 121. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −2.
C. 1.
D. −5.
Câu 122. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
a 3
2a 3
A.
.
B. a 3.
C.
.
D.
.
3
2
2
Câu 123. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 124. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 5}.
D. {4; 3}.
Câu 125. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
C. lim [ f (x) + g(x)] = a + b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Trang 9/10 Mã đề 1
Câu 126. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 2.
Câu 127. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
B. 1.
C. 4.
D. 1.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 3.
Câu 128. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 129. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
√
√
√ thể tích của khối chóp 3S .ABC theo a
3
a
a3 15
a3 15
a 5
.
B.
.
C.
.
D.
.
A.
25
3
25
5
Câu 130. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√
√ N, P bằng
√
√
20 3
14 3
.
B. 6 3.
C. 8 3.
D.
.
A.
3
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
3. A
4. A
5.
D
C
6.
D
D
7.
C
8.
9.
C
10.
C
D
12.
11. A
13.
B
14.
B
15.
B
16.
B
17.
B
18.
B
D
19.
21. A
23.
C
25. A
27.
B
29.
D
D
22.
D
24.
D
26.
C
28.
C
30.
31. A
D
32. A
33.
D
34. A
36. A
35. A
37.
38.
C
C
40.
39. A
41.
20.
D
42. A
B
43. A
45.
B
46. A
47.
B
48. A
49.
50.
C
51. A
B
52.
D
53.
B
54.
D
55.
B
57.
B
56. A
58.
60.
62.
59. A
C
D
61. A
63.
C
64. A
66.
C
67. A
68.
69.
C
70.
C
1
D
B
71.
73.
72.
D
B
74.
C
75.
76.
77. A
79.
C
B
78. A
80. A
B
81. A
82.
83. A
84. A
D
85.
87.
D
86.
B
88. A
B
89.
B
C
90.
B
91.
D
92.
C
93.
D
94.
C
D
96.
C
95.
97.
B
98.
B
99.
B
100.
B
102.
B
104.
B
105. A
106.
B
107. A
108.
B
101.
103.
D
B
109.
D
110.
C
111. A
112.
B
113. A
114.
B
115.
B
116. A
117. A
118.
119.
D
120.
121. A
123.
129.
C
122. A
B
124.
125.
127.
B
D
C
126. A
128.
B
130.
C
2
C
B