Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (713)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.9 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1


Câu 1.√Xác định phần ảo của số phức z = ( 2 + 3i)2

A. 6 2.
B. −7.
C. −6 2.

D. 7.

Câu 2. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.

D. 2.

C. 4.

Câu 3. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy
(ABC) một góc bằng 60◦ . Thể tích√khối chóp S .ABC là


a3


a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
4
8
x3 − 1
Câu 4. Tính lim
x→1 x − 1
A. 0.
B. 3.
C. −∞.
D. +∞.
Câu 5. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 5.
Câu 6. [1] Tập xác định của hàm số y = 4
A. D = (−2; 1).
B. D = R.

x2 +x−2


C. 2.

D. 3.

C. D = R \ {1; 2}.

D. D = [2; 1].



Câu 7. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Z 2
ln(x + 1)
Câu 8. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. −3.
C. 1.
D. 3.
[ = 60◦ , S O
Câu 9. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S

√ BC) bằng
√ với mặt đáy và S O = a.

a 57
a 57
2a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
Câu 10.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =

A.

f (x)dx +

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z


f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

x+1
Câu 11. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
3
4

C. 1.

D. 3.

Câu 12. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =

Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. [3; 4).
B. (1; 2).
C.
;3 .
D. 2; .
2
2


ab.

Trang 1/10 Mã đề 1


Câu 13. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 14. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là


3


a3 3
a
3
a3 2
.
B.
.
C. 2a2 2.
D.
.
A.
24
24
12
1 − n2
bằng?
Câu 15. [1] Tính lim 2
2n + 1
1
1
1
A. 0.
B. − .
C. .
D. .
2
2
3
2

2
2
1 + 2 + ··· + n
Câu 16. [3-1133d] Tính lim
n3
1
2
A. .
B. .
C. 0.
D. +∞.
3
3
x−3 x−2 x−1
x
Câu 17. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (−∞; 2].
D. (2; +∞).
Câu 18. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng

1
A. 2.
B. −2.
C. − .
2
!x
1
1−x
Câu 19. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.
B. − log3 2.
C. 1 − log2 3.

D.

1
.
2

D. log2 3.

Câu 20. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
un
Câu 21. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng

vn
A. 1.
B. +∞.
C. −∞.
D. 0.
Câu 22. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 1.

D. 0.

Câu 23. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; 3; 3).
Câu 24. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Câu 25. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 20.

C. 8.


D. 30.

Câu 26. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Trang 2/10 Mã đề 1


Câu 27. Hàm số y =
A. x = 1.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.

C. x = 2.

D. x = 3.

Câu 28. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6

a 6
B.
.
C.
.
D.
.
A. a 6.
2
6
3
Câu 29. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 30. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 30.

C. 12.

Câu 31.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.


1
dx = ln |x| + C, C là hằng số.
x

B.
Z
D.

D. 20.
xα dx =

xα+1
+ C, C là hằng số.
α+1

0dx = C, C là hằng số.

Câu 32. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 4.
D. ln 12.


4n2 + 1 − n + 2
bằng
Câu 33. Tính lim
2n − 3
3
A. 1.

B. .
C. 2.
D. +∞.
2
Câu 34. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 13 năm.
C. 10 năm.
D. 11 năm.
Câu 35.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 36. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
A.

.
B. 68.
C. 5.
D. 34.
17
Câu 37. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 38. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

C. y0 =

1
2 x . ln

x

.

D. y0 =

1
.
ln 2



Câu 39. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
3
6
6
Trang 3/10 Mã đề 1


4

Câu 40. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :

7
5
2
A. a 3 .
B. a 8 .
C. a 3 .

√3

a2 bằng
5

D. a 3 .

Câu 41. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 42. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m < .
D. m > .
4

4
4
4
2mx + 1
1
Câu 43. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 1.
C. 0.
D. −2.
Câu 44. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. (4; +∞).
Câu 45. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.
Câu 46. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
A. un =
.
B.
u
=
.

n
5n − 3n2
n2

D. [6, 5; +∞).

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 135.
C. un =

n2 + n + 1
.
(n + 1)2

D. S = 32.
D. un =

1 − 2n
.
5n + n2

Câu 47. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 12.

C. 4.
D. 11.
Câu 48. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục thực.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.
1
Câu 49. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (1; +∞).
D. (−∞; 3).
Câu 50. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 3.
D. 0.
 π π
3
Câu 51. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. −1.
C. 7.
D. 3.
Câu 52. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =

.
B. P = 2.
C. P =
.
D. P = 2i.
2
2
Câu 53. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



abc b2 + c2
a b2 + c2
c a2 + b2
b a2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 4/10 Mã đề 1



Câu 54. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC √là
vng góc
√ với đáy và S C = a 3.3 √

a3 6
a 3
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
12
2
9
4
Câu 55.√Thể tích của tứ diện đều √
cạnh bằng a


a3 2
a3 2
a3 2

a3 2
A.
.
B.
.
C.
.
D.
.
6
4
12
2
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 56. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 57. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=

và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
A.
=
=
.
B.
=
=
.
2
3
4
2
2
2
x y−2 z−3
x y z−1
.
D. =

=
.
C. = =
1 1
1
2
3
−1
Câu 58. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
log 2x

Câu 59. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 2 ln 2x
1
1 − 4 ln 2x
0
0
0
.
B.
y
=
.
C.

y
=
.
D.
y
=
.
A. y0 =
2x3 ln 10
x3
x3 ln 10
2x3 ln 10
2−n
bằng
Câu 60. Giá trị của giới hạn lim
n+1
A. 0.
B. −1.
C. 1.
D. 2.
1
Câu 61. [1] Giá trị của biểu thức log √3
bằng
10
1
1
C. 3.
D. − .
A. −3.
B. .

3
3
1

Câu 62. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R \ {1}.
C. D = R.
cos n + sin n
Câu 63. Tính lim
n2 + 1
A. 0.
B. −∞.
C. 1.

D. D = (1; +∞).
D. +∞.

Câu 64. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 65. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =

. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.
B. 3.
C. 1.
D. 2.
3
1
Câu 66. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 67. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−∞; −1).
C. (−1; 1).

D. (1; +∞).
Trang 5/10 Mã đề 1



Câu 68.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
A.
.
B. .
C.
.
4
4
12
Câu 69. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (0; 2).
C. (2; +∞).


3
D.
.
2
D. R.

Câu 70. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD


3
3
a 3
a3
a 3
.
C.
.
D.
.
A. a3 .
B.
3
9
3
n−1
Câu 71. Tính lim 2
n +2
A. 0.
B. 1.
C. 3.
D. 2.




− 3m + 4 = 0 có nghiệm

3
C. 0 ≤ m ≤ .
D. m ≥ 0.
4
ln x p 2
1
Câu 73. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
8
1
A. .
B. .
C. .
D. .
9
3
3
9
0 0 0
Câu 74. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là

4




a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
36
12
6
Câu 75. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.

C. m =
.
D. m =
.
4 − 2e
4e + 2
4e + 2
4 − 2e
Câu 76. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 6510 m.
C. 1202 m.
D. 2400 m.
Câu 72. [12215d] Tìm m để phương trình 4 x+
9
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
4
4

1−x2

− 4.2 x+

1−x2

Câu 77. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019

A. 1.
B. 22016 .
C. e2016 .
D. 0.
Câu 78. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 0.

C. 7.

D. 5.

Câu 79. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
D.
.
A. 5.
B. 7.
C. .
2
2
Câu 80. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).
D. (0; 2).
tan x + m
Câu 81. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng

m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (−∞; −1) ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
2

Câu 82. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 5.
C. 2.

D. 3.
Trang 6/10 Mã đề 1


Câu 83. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 144.

C. 2.

D. 24.
2

2

sin x
Câu 84. [3-c]

+ 2cos x lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm√số f (x) = 2
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
A. 2 và 2 2.

Câu 85. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.423.000.
D. 102.016.000.
Câu 86. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 87. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 88. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1

A. .
B. − .
C. 3.
D. −3.
3
3
Câu 89. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.


2

1

3i lần lượt l √
Câu 90. Phần thực√và phần ảo của số phức
z
=


B. Phần thực là 1√− 2, phần ảo là −√ 3.
A. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 91. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637

1079
1728
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 92. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 8.
B. 3 3.
C. 9.
D. 27.
Câu 93. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.

D. lim f (x) = f (a).
x→a

Câu 94. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Ba mặt.
C. Hai mặt.

D. Một mặt.

Câu 95. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n lần.
D. n3 lần.
Câu 96. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối bát diện đều. D. Khối tứ diện đều.
d = 30◦ , biết S BC là tam giác đều
Câu 97. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39

A.
.
B.
.
C.
.
D.
.
16
13
26
9
Trang 7/10 Mã đề 1


Z
Câu 98. Cho

1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

1
1
A. .
B. .
4
2

Câu 99. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.
2n + 1
Câu 100. Tìm giới hạn lim
n+1
A. 1.
B. 0.

C. 1.

D. 0.

C. 12.

D. 30.

C. 2.

D. 3.

Câu 101. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (−∞; +∞).
C. [1; 2].

D. (1; 2).

Câu 102. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên

(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
3
3
3
3
4a 3
a 3
8a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 103. [1] Hàm số nào đồng
√ biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log π4 x.
D. y = log √2 x.

C. y = log 41 x.
Câu 104. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 105. [1] Đạo hàm của làm số y = log x là
1
1
B. y0 =
.
A. y0 = .
x
x ln 10

C. y0 =

ln 10
.
x

D.

1
.
10 ln x

D.

2

.
e3

2

Câu 106. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 3 .
B. 2 .
C. √ .
2e
e
2 e

Câu 107. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
C.
.
D.
.
A. a3 .
B.
12

24
6
Câu 108. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (3; 4; −4).
C. ~u = (2; 2; −1).
D. ~u = (1; 0; 2).
Câu 109. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.

D. 4 mặt.

1
Câu 110. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.


D. −2.

C. 1.

Câu 111. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −1.
2n − 3
Câu 112. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. +∞.
C. 0.

D. m = −3.
D. −∞.
Trang 8/10 Mã đề 1


Câu 113. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.

C. D = R \ {0}.

D. D = R \ {1}.

Câu 114. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 2.

C. 3.

D. 4.

Câu 115. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d ⊥ P.
Câu 116. Biểu thức nào sau đây√khơng có nghĩa
−3
A. (−1)−1 .
B.
−1.

C. 0−1 .


D. (− 2)0 .

Câu 117. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.

B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 118. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 119. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối bát diện đều.

Câu 120. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 121. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
Câu 122. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên (n − 1) lần. C. Tăng lên n lần.

D. Giảm đi n lần.
Câu 123. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
15
6
9
18
Câu 124. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Tứ diện đều.
D. Thập nhị diện đều.
Câu 125. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (1; −3).

D. (2; 2).
Trang 9/10 Mã đề 1


Câu 126. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)

lần lượt là hình
! chiếu của B, C lên các cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là !
8
5
7
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 127. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.

C. 20.

D. 8.

Câu 128. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích√khối chóp S .ABMN là √


2a3 3
4a3 3

5a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3
Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).

3
3

a 3
a 3
a 2
A. a3 3.
B.
.
C.

.
D.
.
2
4
2
2n + 1
Câu 130. Tính giới hạn lim
3n + 2
2
3
1
C. .
D. .
A. 0.
B. .
2
3
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

C


2.
D

3.

4.

B

5. A

6.

B

7. A

8.

B

9. A

10.

C
C

11.


B

12.

13.

B

14. A

15.

B

16. A

17.

B

18.

19. A

B

20.

D

D

21.

D

22.

23.

D

24.

B

25. A

26.

C

27. A

28.

C

30.


C

29.
31.

C
B

32. A

33. A
35.

34. A
B

36. A

37. A
39.

38. A
40.

B

41.

D


43.

C

45.
47.

C

42.

B

44.

B

46.

D

D

48. A

B

49. A

50.


B

51. A

52.

B

53.

54. A

B

55.

C

56.

C

57.

C

58.

C


59.

C

60.

61.

D

62.

63. A

64.

65.
67.

B

D

66.
68. A

C
1


D
B
C


69.

70.

B

D

71. A

72.

C

73. A

74.

C

75.

76.

C


77.

D

78. A

79.

C

80.

81.

C

82. A

83.

B

84.

85. A
C

B


90. A

91. A

92.

93.

D

94. A

95.

D

96.

B

99.

98.
C

B

103.

D


C
B
C

102.

C

104.

C

B

106.

107.

B

108.
D

B

100.

105.
110.


C

88. A
D

89.

101.

B

86.

87.

97.

B

B
D

111.

B

112.

C


113.

B

114.

C

115.

B

116.

C

117.

118. A

119.

120.

D

121.

122.


D

124.

125.

B

127.
129.

D
C
B
D

126. A
128. A

C
B

130.

2

C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×