Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (298)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.23 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. V = 4π.
D. 16π.
Câu 2. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 3. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.
C. 20.


x
+
3
+


6−x
Câu 4. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=


A. 2 + 3.
B. 2 3.
C. 3.

D. 8.

D. 3 2.

Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
4a 3

8a 3
a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 6. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

C. 2.

D. 1.

Câu 7. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã cho là 1728. Khi đó, các kích
√ thước

√ của hình hộp là
A. 2, 4, 8.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 6, 12, 24.
Câu 8. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|




12 17
B. 34.
C.
A. 5.
.
D. 68.
17
[ = 60◦ , S O
Câu 9. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng


2a 57
a 57
a 57
A. a 57.
B.
.

C.
.
D.
.
19
19
17
Câu 10. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 20 .(3)20
C 10 .(3)40
C 40 .(3)10
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Trang 1/11 Mã đề 1


Câu 11. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 =
.

B. y0 = 2 x . ln x.
ln 2
Câu 12.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.
Z
B.
Z
C.
Z
D.

D. y0 =

1
2 x . ln

x

.

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z


C. y0 = 2 x . ln 2.

Z

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Câu 13. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
Câu 14. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
A.
.
B. .
n
n

C.

sin n
.

n

1
D. √ .
n

Câu 15. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 84cm3 .
C. 64cm3 .
D. 48cm3 .

Câu 16. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.

.
A.
36
6
18
6
1 + 2 + ··· + n
Câu 17. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. lim un = 1.
1
C. lim un = .
D. Dãy số un khơng có giới hạn khi n → +∞.
2
Câu 18. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là


a3 3
a3
a3 3
.
B.
.
C.
.

D. a3 .
A.
6
3
2
1

Câu 19. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R.

D. D = R \ {1}.

Câu 20. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (3; 4; −4).
C. ~u = (2; 2; −1).
D. ~u = (2; 1; 6).
2

Câu 21. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.

D. |z| =

√4
5.

Câu 22. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 6.
C. −5.
D. 5.

Câu 23. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
2

Trang 2/11 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1

0
y
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.

Câu 24. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Câu 25. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. e2016 .
D. 22016 .
Câu 26. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (4; +∞).

Câu 27. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(−4; 8).
D. A(4; −8).
Câu 28. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới

" đây?
!
5
5
A.
;3 .
B. [3; 4).
C. 2; .
D. (1; 2).
2
2


ab.

Câu 29. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
2
4
8
Câu 30.! Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n

n
5
4
1
5
A.
.
B.
.
C.
.
D. − .
3
e
3
3
Câu 31. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.


D. Chỉ có (II) đúng.

Câu 32. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn

A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un
Z
Câu 33. Cho

1


xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

1
.
2
Câu 34. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 − 4 2.
B. 3 − 4 2.
C. 3 + 4 2.
A. 0.

B. 1.

C.

D.

1
.
4


D. −3 + 4 2.

Câu 35. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).

C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Trang 3/11 Mã đề 1


Câu 36. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
8
4
4
12
!
x+1
Câu 37. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)

x
2017
4035
2016
.
B.
.
C. 2017.
D.
.
A.
2017
2018
2018
2n − 3
Câu 38. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. +∞.
C. 0.
D. 1.
Câu 39. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
Câu 40. [2] Tổng các nghiệm của phương trình 3
A. 4.
B. 2.
!4x
!2−x

2
3
Câu 41. Tập các số x thỏa mãn


! 2
#
" 3
2
2
B. − ; +∞ .
A. −∞; .
3
3
Câu 42. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.
x−3
bằng?
Câu 43. [1] Tính lim
x→3 x + 3
A. −∞.
B. 0.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

x2 −4x+5


= 9 là
C. 5.

"

D. 3.

!
2
C.
; +∞ .
5

#
2
D. −∞; .
5

C. D = (0; +∞).

D. D = R \ {0}.

C. +∞.

D. 1.

Câu 44. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Không có câu nào C. Câu (I) sai.
D. Câu (II) sai.
sai.
Câu 45. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 6510 m.
C. 1202 m.
D. 2400 m.
Câu 46. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
A.
D. a 2.
.
B.
.
C. 2a 2.
2
4
1
Câu 47. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy

3
nhất?
A. 4.
B. 2.
C. 3.
D. 1.
Câu 48. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (−1; 0).
Trang 4/11 Mã đề 1


Câu 49. Tính lim
x→2
A. 1.

x+2
bằng?
x
B. 0.

C. 2.

Câu 50. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Ba mặt.

D. 3.
D. Bốn mặt.


d = 120◦ .
Câu 51. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 3a.
C. 4a.
D.
.
2
Câu 52. Biểu thức nào sau đây √
khơng có nghĩa

−3
−1
A. (−1) .
B.
−1.
C. (− 2)0 .
D. 0−1 .
Câu 53. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 0.
D. 3.


Câu 54. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l


A. Phần thực là √2, phần ảo là 1 − √3.
B. Phần thực là 2 −√1, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
1
Câu 55. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.

Câu 56. Thể tích của khối lập phương
√ có cạnh bằng a 2
3


2a 2
B.
.
C. V = 2a3 .
D. V = a3 2.
A. 2a3 2.
3
! x3 −3mx2 +m
1
nghịch biến trên
Câu 57. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π

khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m = 0.
C. m ∈ R.
D. m , 0.
2

Câu 58. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 7.
C. 5.
D. 8.
!
1
1
1
Câu 59. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
B. 1.
C. 2.
D. 0.
A. .
2
Câu 60. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi

ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 11 năm.
D. 14 năm.
[ = 60◦ , S O
Câu 61. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
2
Câu 62. Giá trị của lim(2x − 3x + 1) là
x→1
A. 2.
B. +∞.

C. 0.
D. 1.
Câu 63. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. −2.
C. − .
2
2

D. 2.
Trang 5/11 Mã đề 1


Câu 64. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n − 3n2
(n + 1)2
Câu 65. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.


C. un =

n2 − 3n
.
n2

C. {3; 4}.

D. un =

1 − 2n
.
5n + n2

D. {4; 3}.

Câu 66. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 24 m.
D. 8 m.
Câu 67. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Câu 68. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.

B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 69. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
Câu 70. Giá trị của lim (3x2 − 2x + 1)
A. +∞.

x→1

B. 1.

C. 2.

Câu 71.√Thể tích của tứ diện đều √
cạnh bằng a

3
3
a 2
a3 2
a 2
.
B.
.
C.

.
A.
4
2
12
Câu 72. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log π4 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.

D. 3.

a3 2
D.
.
6

Câu 73. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4

4
4
Câu 74. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 75. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6
A. un =
.
B. un =
.
3
5

C. un = n2 − 4n.

D. un =

n3 − 3n
.
n+1

Câu 76. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.

C. m > 3.
D. m < 3.
Câu 77. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = 10.
D. P = −10.
Câu 78. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 2.
C. −2.
Câu 79. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 2.
B. .
C.
.
2
2

D. 4.
D. 1.
Trang 6/11 Mã đề 1


Câu 80. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = R.
C. D = (−2; 1).

D. D = [2; 1].
log 2x
Câu 81. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
A. y0 =
3
3
2x ln 10
2x ln 10
x
x ln 10
Câu 82. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
2


Câu 83. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục thực.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.
Câu 84. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. Cả ba mệnh đề.

C. (I) và (II).
D. (II) và (III).
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 85. [3] Cho hàm số f (x) = x
4 +2
2017

2017
2017
2016
.
A. T = 2016.
B. T = 2017.
C. T = 1008.
D. T =
2017
Câu 86. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 87. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

B. 5.
C. 25.
A. 5.


Câu 88. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n

D.

1
.

5

B. lim un = c (Với un = c là hằng số).

1
= 0 với k > 1.
nk
Câu 89. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
6
4

Câu 90. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
C. lim qn = 1 với |q| > 1.

D. lim

Trang 7/11 Mã đề 1


ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 0.
C. 1.
x−2
Câu 92. Tính lim
x→+∞ x + 3
A. 1.
B. 2.
C. −3.
Z

2

Câu 91. Cho


12 + 22 + · · · + n2
n3
2
B. .
3

D. 3.

2
D. − .
3

Câu 93. [3-1133d] Tính lim
A. 0.

C. +∞.

1
.
3

D.

Câu 94. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. (1; 2).
C. [1; 2].

D. [−1; 2).


Câu 95. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.

D. 8.

C. 4.

Câu 96. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 97. [2] Phương trình log x 4 log2
12x − 8
A. 2.
B. Vơ nghiệm.
C. 3.
D. 1.
Câu 98. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 99. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.

1
Câu 100. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 101. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
100.1, 03
100.(1, 01)3
C. m =

triệu.
D. m =
triệu.
3
3
Câu 102. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.
C. 5.
D. 4.
Câu 103. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 =
.
B. y0 = .
x ln 10
x

C.

1
.
10 ln x

D. y0 =
2

ln 10
.

x

2

Câu 104. [3-c]
và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x√lần lượt là
√ Giá trị nhỏ nhất √
A. 2 và 2 2.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
Câu 105. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối lập phương.

D. Khối 12 mặt đều.
Trang 8/11 Mã đề 1


Câu 106. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 107. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD là

a3

2a3 3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
4x + 1
bằng?
Câu 108. [1] Tính lim
x→−∞ x + 1
A. 4.
B. 2.
C. −1.
D. −4.
Câu 109. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 3.

C. 2.

D. 5.


Câu 110. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 3 mặt.
D. 6 mặt.
Câu 111. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 9 mặt.

D. 7 mặt.



x=t




Câu 112. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9

9
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
x+2
Câu 113. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vơ số.
B. 3.
C. 2.
D. 1.
Câu 114. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5

A. m ≤ 0.
B. m > − .
C. − < m < 0.
D. m ≥ 0.
4
4
Câu 115. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 1.

C. 3.

D. 2.

Câu 116. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. .
D. 9.
2
2
q
Câu 117. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x + log23 x + 1 + 4m −

√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Trang 9/11 Mã đề 1


Câu 118. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 13 năm.
D. 12 năm.
Câu 119. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; 2).
C. (0; +∞).
D. (−∞; 0) và (2; +∞).
1
Câu 120. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
log2 240 log2 15


+ log2 1 bằng
Câu 121. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 3.
B. 1.
C. 4.
D. −8.
Câu 122. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 10.
B. 11.
C. 12.
D. 4.
Câu 123. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 4.

C. 2.

D. 24.
q
2
Câu 124. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].

D. m ∈ [−1; 0].
1 − 2n
bằng?
Câu 125. [1] Tính lim
3n + 1
2
2
1
A. .
B. − .
C. .
D. 1.
3
3
3
Câu 126. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 127. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng


a 6
a 6
a 6
A.
.

B.
.
C. a 6.
D.
.
6
3
2
Câu 128. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Câu 129.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn√hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 1.
C. 10.
D. 2.
Câu 130. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {2}.
D. {5}.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

3. A

C
D

4.

5.
7.

6. A
8.

C

9.

10.

C

11.

12.

C


13.

14. A

D
B
C
B

15.

C
C

16.

C

17.

18.

C

19.

B

21.


20. A
C

22.
24. A
26.

B

B

23.

B

25.

B

27. A

28. A
30.

D

C

29.


B

31.

B

32.

D

33.

34.

D

35.

B

37.

B

39.

B

41.


B

36. A
C

38.
40. A

C

42.

B

43.

B

44.

B

45.

B

47.

46. A

48.

D

49.

50.

D

51.

52.

D

53.

54.

C

B

B

59.

B


C

61.

62.

C

63.

64.
68.

D

57.

60.

66.

C

55. A

B

56. A
58.


D

D

C
B

65.

C

67.

B

69.

C
1

D
B


70.

71.

C
D


74.

75. A

B

78.
80.

D

73.

72. A
76.

C

77.

B

79. A

C

81.

B


82.

D

D

83. A

84.

C

85.

C

86.

C

87.

C

88.

C

89. A

D

90.

91. A

92. A

93.

94. A

95.
C

96.
98. A
100.

C

104.

D

99.

D
B


103. A
B

105. A
D

106.

D

107.

108. A

109. A

110.

C

112.
114.

B

97.
101.

102. A


D

D

111.

C

113.

C

115.

B

116. A

D

117.

C

118.

D

119.


D

120.

D

121.

D

122.
124.
126.

123. A

C
D

125.
127. A

C

128. A
130.

B

129.

D

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×