Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (625)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.48 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó là:
A. 72cm3 .
B. 46cm3 .
C. 64cm3 .
D. 27cm3 .
Câu 2. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 3. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5}.
C. {5; 2}.
2n + 1
Câu 4. Tìm giới hạn lim
n+1


A. 0.
B. 1.
C. 3.

D. {3}.

D. 2.

Câu 5. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 2.
D. y(−2) = 22.
Câu 6. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 7%.
D. 0, 5%.
x2
Câu 7. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 1.
D. M = e, m = 0.

e
e
2x + 1
Câu 8. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. 2.
C. −1.
D. .
2
Câu 9. [1] Đạo hàm của làm số y = log x là
1
ln 10
1
1
A. y0 = .
B. y0 =
.
C.
.
D. y0 =
.
x
x
10 ln x
x ln 10
log7 16
Câu 10. [1-c] Giá trị của biểu thức
bằng

log7 15 − log7 15
30
A. 4.
B. 2.
C. −4.
D. −2.
Câu 11. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

Câu 12. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất


√ của hàm số. Khi đó tổng M + m
A. 7 3.
B. 16.
C. 8 2.
D. 8 3.

Trang 1/11 Mã đề 1


Câu 13. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−1; 1).
C. (−∞; 1).

D. (−∞; −1).

Câu 14. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
Câu 15. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.
n−1
Câu 16. Tính lim 2
n +2
A. 1.
B. 2.

B. f (x) liên tục trên K.
D. f (x) xác định trên K.

C. 3.

D. 0.


Câu 17. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. −5.
x−2
Câu 18. Tính lim
x→+∞ x + 3
2
A. 1.
B. − .
C. 2.
3
Câu 19. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −2.

D. Không tồn tại.

D. −3.
D. x = −5.

Câu 20.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
A.

xα dx =
α+1
Z
Z
1
dx = ln |x| + C, C là hằng số.
C.
0dx = C, C là hằng số.
D.
x
Câu 21. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 4.

B. 6.

C. −1.

3

Z

6
3x + 1

. Tính

1


f (x)dx.
0

D. 2.

Câu 22. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
D. T = 4 + .
A. T = e + 1.
B. T = e + 3.
C. T = e + .
e
e
3
2
Câu 23. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2


A. 3 − 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
D. −3 + 4 2.
!
!
!
4x

1
2
2016
Câu 24. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2017.
C. T = 1008.
D. T = 2016.
2017
1 + 2 + ··· + n
Câu 25. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. lim un = 1.
1
C. lim un = .
D. Dãy số un khơng có giới hạn khi n → +∞.
2
Câu 26. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5

z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 2; −1).
C. ~u = (2; 1; 6).
D. ~u = (3; 4; −4).
Trang 2/11 Mã đề 1


Câu 27. Phát biểu nào sau đây là sai?
1
A. lim un = c (un = c là hằng số).
B. lim k = 0.
n
1
D. lim qn = 0 (|q| > 1).
C. lim = 0.
n
Câu 28. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.

Câu 29. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. 13.
D. log2 13.
Câu 30. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Hai cạnh.

D. Năm cạnh.
x+3
Câu 31. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 3.
C. 2.
D. Vô số.

Câu 32. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3

πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
6
2
6
√3
4
Câu 33. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
2
B. a 8 .
C. a 3 .
D. a 3 .
A. a 3 .
log(mx)
Câu 34. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.

C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
Câu 35. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.

C. D = R \ {1}.

Câu 36. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C. (4; 6, 5].

D. D = (0; +∞).
D. [6, 5; +∞).

d = 30◦ , biết S BC là tam giác đều
Câu 37. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.

.
D.
.
A.
9
26
16
13
Câu 38. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
n2 + n + 1
n2 − 3n
A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
n
n
n

5n + n2
5n − 3n2
(n + 1)2
n2
1
Câu 39. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = −ey + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 40. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1

x y−2 z−3
A. = =
.
B. =
=
.
1 1
1
2
3
−1
x−2 y+2 z−3
x−2 y−2 z−3
C.
=
=
.
D.
=
=
.
2
2
2
2
3
4
Câu 41. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là 4.

C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là 1.
Trang 3/11 Mã đề 1


Câu 42. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a3 3
5a3 3
a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
Câu 43. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )

A. P = 10.
B. P = 21.
C. P = −21.
D. P = −10.
Câu 44. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 72.

D. 7, 2.

Câu 45. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = −3.
D. m = 0.

Câu 46. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
Câu 47. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.

Câu 48. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 49. [2] Phương trình log x 4 log2
12x − 8
A. 1.
B. 2.
C. 3.
D. Vơ nghiệm.
3a
, hình chiếu vng
Câu 50. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a 2
a
a
A.
.
B.
.
C. .

D. .
3
3
3
4
Câu 51.
Z Các khẳng định
Z nào sau đây là sai?
Z
Z
k f (x)dx = k

A.
Z
C.

f (x)dx, k là hằng số.
B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
f (x)dx = f (x).
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.

f (t)dt = F(t) + C.

Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

2a3 3
a3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 53. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 4.
D. ln 12.
Câu 54. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
C. |z| = 10.
D. |z| = 17.
A. |z| = 10.
B. |z| = 17.
Câu 55. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng


cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
Trang 4/11 Mã đề 1



2 3
A. 1.
C.
.
D. 2.
3
Câu 56. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 0.
D. 2.
2
1−n
Câu 57. [1] Tính lim 2
bằng?
2n + 1
1
1
1
B. .

C. 0.
D. .
A. − .
2
2
3
0
Câu 58. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 10.
C. 11.
D. 12.

B. 3.

Câu 59.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 1.
C. 10.
D. 2.
Câu 60. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng

√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD

a3 3

a
a 3
A.
.
B.
.
C.
.
D. a3 .
9
3
3
Câu 61. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ± 2.
C. m = ±1.
D. m = ±3.
Câu 62. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.

C. 12.

D. 30.

Câu 63. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
3. √
Thể tích khối chóp S .ABC √là
vng góc

với
đáy

S
C
=
a


3
3
a 6
a 3
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
9
2
Câu 64. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = x + ln x.

C. y0 = ln x − 1.
D. y0 = 1 − ln x.
9x
Câu 65. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 1.
C. 2.
D. −1.
2
Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).


a3 3
a3 2
a 3
A.
.
B.
.
C.
.
D. a3 3.
4
2

2
Câu 67. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
x+2
Câu 68. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 69. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 3, 55.
D. 15, 36.
Câu 70. Xét hai câu sau
Trang 5/11 Mã đề 1


Z
(I)

( f (x) + g(x))dx =


Z

f (x)dx +

Z

g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.

Câu 71. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Câu 72. Cho hình chóp S .ABCD có √

đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là

2a3
2a3 3
4a3 3
4a3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 73. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 8.

C. 20.

D. 30.

Câu 74. Biểu thức nào sau đây khơng
√ 0 có nghĩa

−1
A. (−1) .
B. (− 2) .

C. 0−1 .

D.


−1.

−3

Câu 75. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 5
a3
a3 15
A.
.
B.
.
C.
.
D.
.
25
25

3
5
a
1
Câu 76. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 2.
C. 7.
D. 1.
Câu 77. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối

√ chóp S .ABCD là 3 √
3

3
a 3
a3 3
2a
3
.
C.
.
D.
.
A. a 3.
B.
3

3
6
Câu 78. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aα+β = aα .aβ .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
2
Câu 79. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±1.
B. m = ±3.
C. m = ± 3.
D. m = ± 2.

Câu 80. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 81. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
40
20
10

20
C50
.(3)20
C50
.(3)10
C50
.(3)30
C50
.(3)40
A.
.
B.
.
C.
.
D.
.
450
450
450
450
Câu 82. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 3}.

D. {3; 4}.
Trang 6/11 Mã đề 1



!
1
1
1
Câu 83. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. .
C. 2.
D. +∞.
2
2
Câu 84. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 85. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 86. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).

A. 10 năm.
B. 9 năm.
C. 8 năm.
D. 7 năm.
Câu 87. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2
a b2 + c2
abc b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
!4x
!2−x
2

3


Câu 88. Tập các số x thỏa mãn
3 # 2
"
!
#
"
!
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
5
3
5
4x + 1
bằng?
x→−∞ x + 1
B. −4.

Câu 89. [1] Tính lim
A. 2.


Câu 90. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.

C. −1.

D. 4.

C. 20.

D. 8.

Câu 91. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −e2 .
D. −2e2 .
Câu 92. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; 2).

C. (0; +∞).

D. (−∞; 0) và (2; +∞).

Câu 93. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5

23
13
A.
.
B. − .
C. −
.
D.
.
25
16
100
100
Câu 94.! Dãy số nào sau đây có giới
!n hạn là 0?
n
5
1
A.
.
B.
.
3
3
Câu 95. Hàm số y = x +
A. −1.

1
có giá trị cực đại là
x

B. 1.

!n
5
C. − .
3

!n
4
D.
.
e

C. −2.

D. 2.

Câu 96. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 6
a3 3
A.
.

B.
.
C.
.
D.
.
24
48
8
24
Trang 7/11 Mã đề 1


1
Câu 97. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. −3.
B. .
C. − .
D. 3.
3
3
Câu 98. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
B.
.
C. 5.
D. 68.
A. 34.
17
Câu 99. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Một mặt.
D. Bốn mặt.
Câu 100. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.

C. 6.

D. 8.

Câu 101. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 4.


C. 1.

D. 3.

Câu 102. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 32π.
C. 8π.
D. V = 4π.
Câu 103. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 6
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
24

48
48
16



x = 1 + 3t




Câu 104. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
3t
x
=
−1
+
2t
x
=
1
+
7t
x = −1 + 2t

















A. 
B. 
.
D. 
y = 1 + 4t .
y = −10 + 11t . C. 
y=1+t
y = −10 + 11t .
















z = 1 − 5t
z = −6 − 5t

z = 1 + 5t
z = 6 − 5t
Z 3
a
x
a
Câu 105. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
C. P = 16.
D. P = 4.
1

Câu 106. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = R.
C. D = (1; +∞).

D. D = (−∞; 1).

Câu 107. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?

A. 102.424.000.
B. 102.016.000.
C. 102.423.000.
D. 102.016.000.
Trang 8/11 Mã đề 1


Câu 108. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.
D. Có hai.
Câu 109. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 6.
x+1
bằng
Câu 110. Tính lim
x→+∞ 4x + 3
1
A. 3.
B. .
4
x+2
bằng?
Câu 111. Tính lim
x→2
x
A. 3.

B. 0.
Câu 112. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. 8.

D. 10.

C. 1.

D.

C. 2.

D. 1.

C. {3; 4}.

D. {4; 3}.

1
.
3

Câu 113. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = S h.
C. V = 3S h.

D. V = S h.
A. V = S h.
2
3
3
2
Câu 114. Cho hàm số y = x − 3x − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 115.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) − g(x)]dx =

A.

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.

Câu 116. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. 3.
C. .
D. 2e.
e
Câu 117. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
B. a.
C. .
D.
.
A. .
3
2
2

Câu 118. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 3.
C. Vô số.
D. 1.
Câu 119. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
[ = 60◦ , S O
Câu 120. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng


2a 57
a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
19

17


Câu 121. Tìm giá trị lớn nhất của
hàm
số
y
=
x
+
3
+
√6 − x


A. 3.
B. 2 3.
C. 3 2.
D. 2 + 3.
Trang 9/11 Mã đề 1


x2 − 5x + 6
Câu 122. Tính giới hạn lim
x→2
x−2
A. −1.
B. 1.

C. 0.


D. 5.

Câu 123. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là !
7
5
8
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
d = 300 .
Câu 124. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.3 √

3a3 3
a 3
A. V =
.
B. V = 3a3 3.
.

D. V = 6a3 .
C. V =
2
2
d = 120◦ .
Câu 125. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C.
.
D. 2a.
2
2n − 3
Câu 126. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 127. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 6.
C. 8.
D. 4.
Câu 128. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.

B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
5
Câu 129. Tính lim
n+3
A. 2.
B. 0.
C. 3.
D. 1.
Câu 130. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D


2. A

3.

B

4.

5.

B

6.

7.

D

8.

9.

D

10.

11. A
15.

B


16.
20. A

21. A

22.
D

B

24.

C

C

26. A

27.

D

28.

29.

D

30.


31.

D

18. A

19. A

25.

C
B

14.

23.

B
B

B
D

C

12.

13.
17.


D

C
B

32. A

B

33. A

34.

C

35. A

36.

C

37.

D

38. A

39.


D

40. A
42.

41. A
43.
45.

C

44.

C

48.

49. A

D
B

50. A

51.
53.

B

46.


B

47.

D

C
B

55.

D

52.

C

54.

C

56.

C

58.

57. A
59.


B

60.

61.

B

62.

63. A

D
B
C

64. A

65.

B

66.

C

67.

B


68.

C

1


69.

D

72. A

71. A
C

73.
75. A
77.

74.

C

76.

C

78. A


C

79. A

80.

81. A

82. A
C

83.

86.

B

C
B

88. A
D

89.

90. A

91.


C

92.

93.

C

94.

95.

C

96. A

97.

C

98.

99.

D

100.

101.


D

103.

104.

D

105.

106.

C

84.
D

85.
87.

C

70.

C

D
B
B
D

C
D

107. A

108. A

109. A

110.

B

111.

112.

B

113.

D

115.

D

114.
116.


D
B

117.

118. A

119.

120. A

121.

122. A

123.

124. A

125.

126. A

127. A

128.

129.

C


130. A

2

C

B
D
C
D
C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×