TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. [−3; +∞).
C. (−∞; −3].
D. (−3; +∞).
Câu 2. [4-1212d] Cho hai hàm số y =
2
Câu 3. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 2 − log2 3.
C. 1 − log3 2.
π
Câu 4. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
2 π4
1 π
B.
e .
C. 1.
A. e 3 .
2
2
2
Câu 5. Tính mơ đun của số phức z biết
√4 (1 + 2i)z = 3 + 4i.
√
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. 1 − log2 3.
√
3 π6
D.
e .
2
D. |z| =
√
5.
Câu 6. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 0.
D. 22016 .
Câu 7. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
A. n3 lần.
B. 2n2 lần.
C. n3 lần.
D. 2n3 lần.
Câu 8. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 1.
C. 2.
D. 0.
Câu 9. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
Câu 10. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3
a3 5
a3 15
.
B.
.
C.
.
D.
.
A.
25
5
3
25
tan x + m
Câu 11. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (1; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).
4x + 1
Câu 12. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −4.
C. −1.
D. 2.
Trang 1/11 Mã đề 1
Câu 13. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng
√
√
√
a 6
C. a 6.
D. 2a 6.
A.
.
B. a 3.
2
Câu 14. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B. a3 .
C.
.
D.
.
24
12
6
1 + 2 + ··· + n
Câu 15. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
D. lim un = 1.
C. lim un = .
2
Câu 16. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
a3 6
a3 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
24
8
48
24
Câu 17. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
!x
1
1−x
Câu 18. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. log2 3.
B. 1 − log2 3.
C. − log2 3.
D. − log3 2.
Câu 19. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C. 7.
D.
.
2
2
√
Câu 20. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 3 nghiệm.
D. 2 nghiệm.
Câu 21. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. (−∞; −3].
D. [−3; 1].
Câu 22. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 16π.
D. 8π.
Câu 23. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
x+1
bằng
Câu 24. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
6
2
3
2
x − 3x + 3
Câu 25. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 2.
C. x = 1.
D. x = 3.
Trang 2/11 Mã đề 1
2
Câu 26. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 5.
C. 3.
D. 4.
Câu 27. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.
C. 0, 3.
D. 0, 5.
1
Câu 28. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R.
D. D = R \ {1}.
Câu 29. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 8 mặt.
D. 4 mặt.
Câu 30. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.
√
√
4n2 + 1 − n + 2
Câu 31. Tính lim
bằng
2n − 3
3
A. 1.
B. .
2
C. 12.
D. 8.
C. +∞.
D. 2.
Câu 32. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 4.
C. 2.
Câu 33. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −4.
C. 2.
D. 3.
D. −2.
Câu 34. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Tăng lên n lần.
C. Không thay đổi.
D. Tăng lên (n − 1) lần.
Câu 35. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+1
c+2
Câu 36. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. 13.
D.
3b + 2ac
.
c+3
D. Không tồn tại.
Câu 37. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .
C. [3; 4).
D. (1; 2).
2
2
√
ab.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 38. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
2
A.
.
B. 2a 2.
C.
.
D.
.
24
24
12
Câu 39. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 20.
C. 30.
D. 8.
Trang 3/11 Mã đề 1
12 + 22 + · · · + n2
Câu 40. [3-1133d] Tính lim
n3
2
1
A. .
B. 0.
C. +∞.
D. .
3
3
Câu 41. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 42. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ± 2.
C. m = ±1.
D. m = ±3.
Câu 43. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
C. 24.
D. 144.
Câu 44. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.
C. 27.
D. 10.
Câu 45. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −e2 .
D. −2e2 .
Câu 46. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).
D. R.
Câu 47. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 0.
D. m > 1.
Câu 48. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 6510 m.
C. 2400 m.
D. 1202 m.
Câu 49. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
36
6
12
Câu 50. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Z 1
Câu 51. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4
0
B. 0.
C.
1
.
2
D. 1.
Câu 52. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. −1.
B. 6.
C. 2.
3
Z
6
3x + 1
. Tính
1
f (x)dx.
0
D. 4.
Câu 53. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 54. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 1.
ln 10
D. f 0 (0) = 10.
Trang 4/11 Mã đề 1
Câu 55. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√
√
√ (A C D) bằng
√
a 3
a 3
2a 3
.
B.
.
C.
.
D. a 3.
A.
2
2
3
Câu 56. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
D. log2 a =
.
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
log2 a
loga 2
Câu 57. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −3.
C. Không tồn tại.
D. −7.
Câu 58. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 27.
C. 12.
D. 18.
2
x2
Câu 59. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = e, m = .
D. M = e, m = 1.
A. M = , m = 0.
e
e
Câu 60. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Bốn mặt.
D. Hai mặt.
Câu 61. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.
C. 8.
Câu 62. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.
D. 12.
D. {4; 3}.
Câu 63. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n2 lần.
D. n lần.
log 2x
Câu 64. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
.
C. y0 = 3
.
D. y0 =
.
.
B. y0 = 3
A. y0 =
3
x
x ln 10
2x ln 10
2x3 ln 10
x2 − 5x + 6
Câu 65. Tính giới hạn lim
x→2
x−2
A. −1.
B. 1.
C. 5.
D. 0.
Câu 66. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 1.
B. 10.
C. 2.
D. 2.
Câu 67. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = 21.
D. P = −10.
Câu 68. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. 1.
B. .
C. .
D. 3.
2
2
!
1
1
1
Câu 69. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. 1.
C. .
D. 0.
2
x+3
Câu 70. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 2.
C. 1.
D. Vô số.
Trang 5/11 Mã đề 1
Câu 71. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B.
.
C. a 2.
D. 2a 2.
A.
4
2
Câu 72. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. .
C. .
D. a.
2
3
2
x−1
Câu 73. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√ đều ABI có hai đỉnh A, √
B. 2 3.
C. 2.
D. 6.
A. 2 2.
3
2
Câu 74. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. −3 − 4 2.
B. −3 + 4 2.
C. 3 − 4 2.
√
D. 3 + 4 2.
Câu 75. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 16 m.
D. 24 m.
Câu 76. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 0.
C. 1.
D. 3.
Câu 77. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 3.
D. V = 5.
Câu 78. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 5.
D. 1.
!
!
!
1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 79. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2017.
C. T = 1008.
D. T = 2016.
2017
Câu 80. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. 2.
x−2
Câu 81. Tính lim
x→+∞ x + 3
2
A. − .
B. 2.
C. 1.
3
D. −1.
D. −3.
Câu 82. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (2; 4; 4).
D. (1; 3; 2).
Câu 83. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5; 2}.
C. {3}.
D. {5}.
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 3
2a 3
a3 3
3
A.
.
B.
.
C. a 3.
D.
.
6
3
3
Trang 6/11 Mã đề 1
Câu 85. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
(1, 01)3
100.(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
3
Câu 86. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. [−1; 2).
C. (1; 2).
D. (−∞; +∞).
Câu 87. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 6.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
B. 67.
C. 34.
D. 26.
Câu 88. Tìm m để hàm số y =
A. 45.
Câu 89. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 3.
Câu 90. [1] Tính lim
1
A. − .
2
1 − n2
bằng?
2n2 + 1
B. 0.
Câu 91. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
Câu 92. [1] Tính lim
x→3
A. −∞.
x−3
bằng?
x+3
B. 1.
C.
1
.
2
D. 0.
D.
1
.
3
C. Khối bát diện đều.
D. Khối 12 mặt đều.
C. 0.
D. +∞.
Câu 93. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 94. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
√
a3 3
a3 3
a
2
A.
.
B.
.
C. a3 3.
D.
.
4
2
2
Câu 95. Trong khơng gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
√
Câu 96. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3
√
a 3
a3 3
a3
A.
D.
.
B.
.
C. a3 3.
.
3
12
4
Câu 97. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Trang 7/11 Mã đề 1
Câu 98. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
Câu 99. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x + .
B. y =
.
x
2x + 1
C. y = x3 − 3x.
D. y = x4 − 2x + 1.
Câu 100.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
1
4
.
B.
.
A.
e
3
!n
5
C. − .
3
!n
5
D.
.
3
Câu 101. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. 9.
C. 6.
D. .
A. .
2
2
Câu 102. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
18
9
15
Câu 103. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√
√ là
3
3
3
3
4a 3
a 3
8a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
3
2
x
Câu 104. [2] Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
A. m = ±3.
B. m = ± 2.
C. m = ±1.
D. m = ± 3.
Câu 105. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 9.
C. 5.
D. 0.
Câu 106. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
3
2
1
Câu 107. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = 4.
Câu 108. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 23.
D. 24.
Câu 109. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 110. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = −1.
D. m = 0.
Trang 8/11 Mã đề 1
Câu 111. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
B. 4.
C. 3.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 1.
Câu 112. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 113. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và√AD bằng
√
√
√
a 2
a 2
B.
.
C.
.
D. a 3.
A. a 2.
2
3
log2 240 log2 15
Câu 114. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 3.
C. 1.
D. 4.
!
x+1
Câu 115. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
A.
.
B.
.
C. 2017.
D.
.
2018
2018
2017
Câu 116. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
!
1
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng ; 1 .
3
!
!
1
1
D. Hàm số nghịch biến trên khoảng −∞; .
C. Hàm số nghịch biến trên khoảng ; 1 .
3
3
Câu 117. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 216 triệu.
C. 210 triệu.
D. 220 triệu.
Câu 118. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 3.
C. 1.
D. 2.
0 0 0 0
Câu 119.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
3
2
2
7
√
x2 + 3x + 5
Câu 120. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 0.
C. 1.
D. − .
4
4
Câu 121. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x)g(x)] = ab.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 122. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 123. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Trang 9/11 Mã đề 1
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 124. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.
C. 12.
D. 6.
Câu 125. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
q
2
Câu 126. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
√
√
Câu 127. Phần thực
√ và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l
√
A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 128. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 2.
B. 1.
C.
.
D. .
2
2
1
Câu 129. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
1
Câu 130. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2.
3.
B
4.
5.
B
6.
C
8.
C
7.
C
9. A
10. A
11. A
12. A
13.
C
14.
15.
C
16. A
17.
C
18.
19.
B
21.
D
24. A
26.
D
28. A
D
20.
D
23.
D
25.
C
27.
C
B
C
37. A
39. A
40.
D
42.
41. A
43.
C
44. A
D
45.
46.
C
47.
D
51.
52.
D
53.
B
B
D
C
B
55.
C
C
56.
D
57.
58.
D
59.
60.
C
49.
B
50.
B
61.
C
62. A
C
63. A
65. A
B
66. A
68.
D
35.
38. A
64.
C
33.
34. A
54.
C
31. A
C
32.
48.
B
29. A
30.
36.
C
B
1
67.
B
69.
B
70. A
D
72.
71.
B
73.
B
74.
B
75.
76.
B
77. A
C
78. A
79.
C
80. A
81.
C
82.
D
83.
B
84.
D
85.
C
86.
D
87.
C
88.
C
90. A
92.
94.
C
B
96. A
98.
100.
C
B
89.
D
91.
D
93.
D
95.
B
97.
B
99.
B
101. A
103.
D
104.
B
105.
B
106.
B
107.
B
108.
B
110.
B
109.
C
111.
D
112.
113.
B
114. A
115.
B
116.
D
C
117. A
118.
D
119. A
120.
D
122.
D
124.
D
D
121.
123.
125.
B
D
126.
127. A
129.
B
128. A
D
130.
2
B