Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001
Câu 1. Hàm
√ số nào sau√đây đồng biến trên R?
A. y = x2 + x + 1 − x2 − x + 1.
B. y = tan x.
2
C. y = x .
D. y = x4 + 3x2 + 2.
x
Câu 2. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1
1
A. min y = − .
B. min y = 0.
C. min y = −1.
D. min y = .
R
R
R
R
2
2
p
3
Câu 3. Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x + 4x = (3 − y) 1 − y. Kết luận nào
sau đây là sai?
A. Nếu 0 < x < 1 thì y < −3.
B. Nếux = 1 thì y = −3.
2
C. Nếu 0 < x < π thì y > 1 − 4π .
D. Nếux > 2 thìy < −15.
Câu R4. Công thức nào sai?
A. R e x = e x + C.
C. cos x = sin x + C.
R
B. R sin x = − cos x + C.
D. a x = a x . ln a + C.
Câu 5. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 60a3 .
B. 20a3 .
C. 30a3 .
D. 100a3 .
Câu 6. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 2.
B. 0.
C. 1.
D. 4.
Câu 7. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (0; 2; 0).
B. (−2; 0; 0).
C. (0; 6; 0).
D. (0; −2; 0).
ax + b
có đồ thị như hình vẽ bên. Kết luận nào sau đây là sai?
Câu 8. Cho hàm số y =
cx + d
A. ad > 0 .
B. ab < 0 .
C. ac < 0.
D. bc > 0 .
Câu 9. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (2; 3; 1).
B. M ′ (−2; 3; 1).
C. M ′ (−2; −3; −1).
D. M ′ (2; −3; −1).
−u (2; −2; 1), kết luận nào sau đây đúng?
Câu 10. Trong
hệ tọa độ Oxyz cho →
√ không gian với→
−
−u | = 9.
−u | = 1.
→
−
B. | u | = 3.
C. |→
D. |→
A. | u | = 3.
√
Câu 11. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối tròn xoay tạo thành.
π
10π
A. V = π.
B. V = .
C. V =
.
D. V = 1.
3
3
Câu 12. Phương trình tiếp tuyến với đồ thị hàm số y = log5 x tại điểm có hồnh độ x = 5 là:
x
1
x
A. y =
−
.
B. y =
+ 1.
5 ln 5 ln 5
5 ln 5
x
1
x
1
C. y =
−1+
.
D. y =
+1−
.
5 ln 5
ln 5
5 ln 5
ln 5
Câu 13. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
A. m ∈ (0; 2).
B. m ≥ 0.
C. m ∈ (−1; 2).
D. −1 < m < .
2
Trang 1/5 Mã đề 001
Câu 14. Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − 5 = 0. Bán kính R
của (S) bằng bao nhiêu?
√
√
A. R = 3.
B. R = 29.
C. R = 21.
D. R = 9.
R1 √3
Câu 15. Tính I =
7x + 1dx
0
60
A. I = .
28
B. I =
45
.
28
C. I =
20
.
7
D. I =
21
.
8
x
trên tập xác định của nó là
+1
1
1
A. min y = −1.
B. min y = 0.
C. min y = .
D. min y = − .
R
R
R
R
2
2
Câu 17. Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc giữa hai mặt phẳng (ABC) và (A′ BC)bằng
600 Biết diện√tích của tam giác ∆A′ BC bằng 2a2 Tính thể tích V của khối lăng trụ ABC.A′ B′C ′
√
a3 3
2a3
A. V =
.
B. V = 3a3 .
C. V = a3 3.
D. V =
.
3
3
Câu 18. Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1). Tìm điểm M sao cho
3MA2 + 2MB2 − MC 2 đạt giá trị nhỏ nhất.
3 1
3 3
3 1
3 1
B. M(− ; ; −1).
C. M(− ; ; −1).
D. M(− ; ; 2).
A. M( ; ; −1).
4 2
4 2
4 2
4 2
3
3
3
Câu 19. Hàm số y = (x + m) + (x + n) − x đồng biến trên khoảng (−∞; +∞). Giá trị nhỏ nhất của
biểu thức P = 4(m2 + n2 ) − m − n bằng
1
−1
A. . .
B.
.
C. 4.
D. −16.
4
16
Câu 20. Số phức z = 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M. Tìm tọa độ điểm M
A. M(5; 2).
B. M(−5; −2).
C. M(−2; 5).
D. M(5; −2).
Câu 16. Giá trị nhỏ nhất của hàm số y =
x2
Câu 21. Cho hình phẳng D giới hạn bởi các đường y = (x − 2)2 , y = 0, x = 0, x = 2. Khối tròn xoay tạo
thành khi quay D quạnh trục hồnh có thể tích V bằng bao nhiêu?
32
32
32π
.
B. V = .
C. V = 32π.
D. V =
.
A. V =
5
5
5π
R3
Câu 22. Biết F(x) = x2 là một nguyên hàm của hàm số f (x) trên R. Giá trị của [1 + f (x)]dx bằng
1
32
A. .
B. 8.
C. 10.
3
Câu 23. Thể tích khối lập phương có cạnh 3a là:
A. 8a3 .
B. 3a3 .
C. 27a3 .
D.
26
.
3
D. 2a3 .
Câu 24. Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3 (x2 − 5x + m) >
log3 (x − 2) có tập nghiệm chứa khoảng (2; +∞). Tìm khẳng định đúng.
A. S = (−∞; 4).
B. S = [6; +∞).
C. S = (−∞; 5].
D. S = (7; +∞).
Câu 25. Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2). Tìm tọa độ D để ABCD là hình bình
hành.
A. (1; −1; 1).
B. (−1; 1; 1).
C. (1; −2; −3).
D. (1; 1; 3).
(2 ln x + 3)3
là :
x
2 ln x + 3
(2 ln x + 3)4
(2 ln x + 3)4
(2 ln x + 3)2
A.
+ C.
B.
+ C.
C.
+ C.
D.
+ C.
8
8
2
2
Câu 27. Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:
A. loga (xy) = loga x.loga y.
B. loga 1 = a và loga a = 0.
n
C. loga x = log 1 x , (x > 0, n , 0).
D. loga x có nghĩa với ∀x ∈ R.
Câu 26. Họ nguyên hàm của hàm số f (x) =
an
Trang 2/5 Mã đề 001
Câu 28. Đồ thị hàm số nào sau đây có 3 điểm cực trị:
A. y = x4 − 2x2 − 1.
B. y = 2x4 + 4x2 + 1. C. y = x4 + 2x2 − 1.
D. y = −x4 − 2x2 − 1.
x−3
y−6
z−1
=
=
và
−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
y−1 z−1
x y−1 z−1
x
=
=
.
B. =
=
.
A.
−1
3
4
1
−3
4
x−1
y
z−1
x
y−1 z−1
C.
=
=
.
D.
=
=
.
−1
−3
4
−1
−3
4
Câu 29. Trong khơng gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
Câu 30. Cho hàm số y = 5 x −3x . Tính y′
2
A. y′ = (2x − 3)5 x −3x ln 5 .
2
C. y′ = (x2 − 3x)5 x −3x ln 5.
2
B. y′ = (2x − 3)5 x −3x .
2
D. y′ = 5 x −3x ln 5 .
√
Câu 31. Cho hình chóp S .ABC có S A⊥(ABC), S A = a 3. Tam giác ABC vuông cân tại B, AC = 2a.
Thể tích √
khối chóp S .ABC là √
√
3
3
√
a3 3
2a 3
a
3
.
B.
.
C. a3 3 .
.
A.
D.
3
3
6
1
1
1
Câu 32. Rút gọn biểu thức M =
+
+ ... +
ta được:
loga x loga2 x
logak x
k(k + 1)
4k(k + 1)
k(k + 1)
k(k + 1)
A. M =
.
B. M =
.
C. M =
.
D. M =
.
loga x
loga x
2loga x
3loga x
2
Câu 33. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh
√ a. Hai mặt phẳng (S AB), (S AC) cùng
2
vng góc
là a 3. Tính thể tích khối
√diện tích tam giác S BC3 √
√ chóp S .ABC.
√ với mặt phẳng (ABC),
3
3
3
a 5
a 15
a 15
a 15
.
B.
.
C.
.
D.
.
A.
8
3
4
16
R
ax + b 2x
Câu 34. Biết a, b ∈ Z sao cho (x + 1)e2x dx = (
)e + C. Khi đó giá trị a + b là:
4
A. 3.
B. 1.
C. 2.
D. 4.
Câu 35. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. 1.
B. 2.
C. 4.
D. −3.
Câu 36. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vng góc với mặt phẳng
(ABC),
√ S A = 2a. Gọi α là số đo góc giữa đường thẳng S√B và mp(S AC). Tính giá√trị sin α.
1
5
15
15
A.
.
B. .
C.
.
D.
.
3
2
5
10
Câu 37. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.
2mn + n + 3
2mn + n + 2
A. log2 2250 =
.
B. log2 2250 =
.
n
n
3mn + n + 4
2mn + 2n + 3
C. log2 2250 =
.
D. log2 2250 =
.
n
m
Câu 38. Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vng. Diện tích tồn phần của (T ) là
A. 10π.
B. 6π.
C. 12π.
D. 8π.
r
3x + 1
Câu 39. Tìm tập xác định D của hàm số y = log2
x−1
A. D = (−∞; 0).
B. D = (1; +∞).
C. D = (−∞; −1] ∪ (1; +∞).
D. D = (−1; 4) ———————————————– .
Trang 3/5 Mã đề 001
Câu 40. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)
√ là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
3 2
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng
. Giả sử phương trình mặt phẳng (P) có dạng
2
ax + by + cz + 2 = 0. Tính giá trị abc.
A. −4.
B. 4.
C. 2.
D. −2.
Câu 41. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
2 7 21
5 11 17
7 10 31
4 10 16
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
A. M( ; ; ).
3 3 3
3 3 3
3 3 3
3 3 6
−
→
Câu 42. Trong không gian Oxyz, cho hai mặt phẳng
√ (P) và (Q) lần lượt có hai vectơ pháp tuyến là nP và
3
−
−
→ −
→
n→
Góc giữa hai mặt phẳng (P) và (Q) bằng.
Q . Biết cosin góc giữa hai vectơ nP và nQ bằng −
2
A. 60◦ .
B. 30◦ .
C. 90◦ .
D. 45◦ .
Câu 43. Cho cấp số nhân (un ) với u1 = 3 và công bội q = −2. Số hạng thứ 7 của cấp số nhân đó là
A. −192.
Câu 44. Nếu
B. 384.
R6
f (x) = 2 và
1
A. 2.
R6
g(x) = −4 thì
1
B. −6.
C. 192.
R6
D. −384.
( f (x) + g(x)) bằng
1
C. 6.
D. −2.
√
Câu 45. Cho hình thang cong (H) giới hạn bởi các đường y = x, y = 0, x = 0, x = 4. Đường thẳng
x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S 1 và S 2 như hình vẽ. Để S 1 = 4S 2 thì giá
trị k thuộc khoảng nào sau đây?
A. (3, 1; 3, 3)·.
B. (3, 5; 3, 7)·.
C. (3, 3; 3, 5)·.
D. (3, 7; 3, 9)·.
Câu 46. Trong khơng gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A. (x + 1)2 + (y + 4)2 + (z − 2)2 = 40.
√
C. (x + 1)2 + (y + 4)2 + (z − 2)2 = 40.
B. (x − 1)2 + (y − 4)2 + (z + 2)2 = 10.
D. (x − 1)2 + (y − 4)2 + (z + 2)2 = 40.
Câu 47. Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât. Hoi co bao nhiêu cach phân công khac
nhau.
A. 103 .
B. 310 .
C. A310 .
3
D. C10
.
ax + b
có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị
cx + d
hàm số đã cho và trục hoành là
Câu 48. Cho hàm số y =
A. (0 ; −2).
B. (3; 0 ).
C. (2 ; 0).
D. (0 ; 3). .
Câu 49. Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0.
Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B. Điểm M thay đổi trong (P)
sao cho M ln nhìn đoạn AB dưới góc 90o . Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào
trong các điểm sau?
A. J(−3; 2; 7).
B. I(−1; −2; 3).
C. K(3; 0; 15).
D. H(−2; −1; 3).
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001