ĐỀ MẪU CĨ ĐÁP ÁN
ƠN TẬP KIẾN THỨC
TỐN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-------------------------
Họ tên thí sinh: .................................................................
Số báo danh: ......................................................................
Mã Đề: 001.
Câu 1. Để xét tính đơn điệu của hàm số
khi cho bảng xét dấu đạo hàm
A. Trên đồng biến, dưới nghịch biến chú ý gộp khoảng khi tiếp xúc.
B. Đi lên nghịch biến, đi xuống nghịch biến.
C. Đi lên đồng biến, đi xuống nghịch biến.
thì ta dùng
D. Đạo hàm
dương là đồng biến,
âm thì nghịch biến.
Đáp án đúng: D
Câu 2. Hình nào sau đây khơng có trục đối xứng?
A. Tam giác đều.
B. Hình trịn.
C. Hình hộp xiên.
D. Đường thẳng.
Đáp án đúng: C
Giải thích chi tiết:
Đường trịn có vơ số trục đối xứng, các trục này đi qua tâm đường trịn.
Đường thẳng có trục đối xứng trùng với nó.
Tam giác đều có trục đối xứng, các trục này đi qua trọng tâm của tam giác đều.
Hình hộp xiên khơng có trục đối xứng.
Câu 3.
Tổng diện tích các mặt của hình lập phương là
A.
. Thể tích của khối lập phương đó bằng
.
B.
.
C.
.
Đáp án đúng: D
Câu 4.
D.
.
Cho hàm số bậc bốn
có đồ thị là đường cong trong hình bên
1
Số nghiệm của phương trình
là
A. .
Đáp án đúng: B
Câu 5. Gọi
B.
và
.
C. .
D. .
tương ứng là giá trị lớn nhất, giá trị nhỏ nhất của hàm số
. Tính tổng
.
A.
C.
Đáp án đúng: D
.
B.
.
D.
Giải thích chi tiết: Gọi
Tính tổng
và
.
.
B.
.
C.
Lời giải
.
D.
.
Khi đó
suy ra
, với
.
tương ứng là giá trị lớn nhất, giá trị nhỏ nhất của hàm số
A.
Đặt
.
.
.
.
Ta có
.
2
Đặt
Do đó
với
;
đồng biến trên
.
.
Nên
Ta có
.
,
,
Do đó
.
,
.
Vậy
.
Câu 6. Giá trị của
với
và
A. .
Đáp án đúng: B
B.
Giải thích chi tiết: Với
và
bằng
.
C.
, ta có:
Câu 7. Cho số phức
. Môđun của
A.
.
Đáp án đúng: A
là
B. 1.
C. 2.
Giải thích chi tiết: Cho số phức
A.2. B.
.
Hướng dẫn giải
C. 1.
D.
D.
D.
. Mơđun của
.
là
.
🖎
🖎
Vậy chọn đáp án B.
Câu 8. Hình hộp chữ nhật có bao nhiêu mặt phẳng đối xứng?
A. .
Đáp án đúng: C
Câu 9. Đặt
A.
Đáp án đúng: A
Giải thích chi tiết:
B. vơ số.
. Khi đó
biểu diễn theo
B.
C.
.
D.
.
là
C.
D.
3
.
Câu 10. Xét các số phức z thỏa mãn
là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các
điểm biểu diễn số phức z là một đường trịn có bán kính bằng:
A.
Đáp án đúng: A
Câu 11. Cho
tỉ, ta được
B.
C.
là một số thực dương và khác 1. Viết biểu thức
A.
.
Đáp án đúng: C
B.
.
Câu 12. Tìm nghiệm phương trình
A.
D. 3
dưới dạng lũy thừa với số mũ hữu
C.
.
D.
.
.
.
B.
C.
.
Đáp án đúng: C
.
D.
.
Giải thích chi tiết:
Câu 13.
: Cho hàm số có đồ thị
A.
Đáp án đúng: D
có đồ thị
B.
Câu 14. Có bao nhiêu giá trị thực của tham số
A. .
Đáp án đúng: D
Tìm tọa độ giao điểm I của hai đường tiệm cận của đồ thị
C.
để đồ thị hàm số
B. .
Giải thích chi tiết: Có bao nhiêu giá trị thực của tham số
cận đứng?
A. . B.
Lời giải
D.
C.
.
để đồ thị hàm số
khơng có tiệm cận đứng?
D.
.
khơng có tiệm
. C. . D. .
Đồ thị hàm số
khơng có tiệm cận đứng khi và chỉ khi giới hạn
là giới hạn hữu hạn.
4
*) Điều kiện cần: Giới hạn
là giới hạn hữu hạn suy ra
là nghiệm của
. Ta có
.
*) Điều kiện đủ:
-Với
, ta có
- Với
, ta có
. Do đó
thỏa mãn.
. Do đó
thỏa mãn.
Vậy có giá trị của
thỏa mãn đề bài.
Câu 15. : Hình trụ có thiết diện qua trục là hình vng cạnh a có diện tích tồn phần là :
A.
.
Đáp án đúng: C
Câu 16.
B.
.
C.
.
D.
Giá trị nhỏ nhất, giá trị lớn nhất của hàm số
, tính
.
lần lượt là
và
.
A.
.
B.
.
C.
.
Đáp án đúng: A
D.
.
Giải thích chi tiết: Giá trị nhỏ nhất, giá trị lớn nhất của hàm số
lần lượt là
A.
Lời giải
và
, tính
. B.
.
. C.
Tập xác định
.
Đặt
ta có
Xét hàm số
. D.
và
với
.
.
Ta có
Vì
.
.
,
nên
Vậy
Câu 17.
.
Cho hình chóp
có đáy là tam giác vng cân tại
đáy, biết
Thể tích của khối chóp
.
cạnh bên
vng góc với mặt phẳng
bằng
5
A.
Đáp án đúng: C
B.
Câu 18. Cho hàm số
C.
liên tục, luôn dương trên
của tích phân
D.
và thỏa mãn
. Khi đó giá trị
là
A.
.
Đáp án đúng: D
B.
.
C.
.
D.
.
Giải thích chi tiết:
Vậy
.
.
Câu 19. : Cho khối lăng trụ
bằng ?
có
là tứ diện đều cạnh bằng
. Thể tích khối lăng trụ
A.
.
B.
.
C.
.
D.
.
Đáp án đúng: B
Câu 20. Một hình lập phương có diện tích tồn phần bằng 12. Thể tích của khối lập phương đó là:
A. 8.
Đáp án đúng: A
Câu 21.
B.
Cho tam giác đều
điểm ?
.
C.
.
D. 4.
( xem hình vẽ ), với góc quay nào sau đây thì phép quay tâm
A.
.
Đáp án đúng: D
Câu 22.
B.
Cho hàm số
.
liên tục trên
. Tính tích phân
A.
Đáp án đúng: B
Giải thích chi tiết: Ta có:
B.
C.
thỏa mãn
.
D.
,
biến điểm
thành
.
. Biết rằng
.
C.
D.
.
6
Đặt
, với
;
.
.
.
.
.
Câu 23.
Tìm tất cả các giá trị của tham số
để
là một nghiệm của bất phương trình
.
A.
.
B.
C.
.
Đáp án đúng: A
D.
Câu 24. Giá trị nhỏ nhất của hàm số
A. 2.
Đáp án đúng: B
B.
. C. 2.
Vì
D.
.
D.
trên đoạn
.
là
.
.
.
Câu 25. Giá trị lớn nhất của hàm số f ( x)=
4
.
3
Đáp án đúng: A
A.
B.
Câu 26. Cho hàm số
Giá trị của
là
C. 10.
nên
khi
.
trên đoạn
Giải thích chi tiết: Giá trị nhỏ nhất của hàm số
A. 10. B.
Lời giải
.
5
.
3
có đạo hàm
1
trên khoảng ( − ∞ ; +∞ ) là:
x + x+1
2
C. 1.
liên tục trên đoạn
D. 0.
và thỏa mãn
.
bằng
7
A.
.
Đáp án đúng: D
B.
Câu 27. Xét các số phức
C.
thoả mãn
parabol có toạ độ đỉnh
. Tính
A. .
Đáp án đúng: C
B.
.
D.
.
là số thực. Tập hợp các điểm biểu diễn của số phức
là
?
.
C.
Giải thích chi tiết: +) Giả sử
.
D.
.
.
Khi đó
.
+)
là số thực
Số phức
.
có điểm biểu diễn
quỹ tích các điểm
là parabol có phương trình
Tập hợp các điểm biểu diễn của số phức
.
là parabol có toạ độ đỉnh
.
Câu 28. Nguyên hàm
A.
.
Đáp án đúng: D
là
B.
.
C.
.
D.
.
Giải thích chi tiết:
Câu 29. Cho
và
A.
Đáp án đúng: D
B.
Câu 30. Trong không gian,
A.
C.
.
Đáp án đúng: C
Khi đó biểu thức
.
có giá trị là:
C.
cho
D.
. Toạ độ trung điểm
B.
.
D.
.
của đoạn thẳng
là
8
Câu 31. Giải bất phương trình
A.
.
Đáp án đúng: D
B.
.
C.
.
D.
.
Giải thích chi tiết: Đặt
Khi đó bất phương trình trở thành
. Với
ta có:
Câu 32. Cho hình trụ có bán kính đáy bằng
trụ đó bằng
A.
.
B.
.
Đáp án đúng: C
Câu 33.
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đạt cực tiểu tại
A.
B.
Đáp án đúng: B
.
và thiết diện qua trục là hình vng. Diện tích xung quanh hình
C.
.
D.
C.
D.
C.
D.
.
Câu 34. Tìm đạo hàm của hàm số:
A.
Đáp án đúng: B
Câu 35. Cho
B.
là số thực dương và khác
A.
Đáp án đúng: A
B.
Tính giá trị biểu thức
C.
D.
----HẾT---
9