$&i
I
l.]i:r
t:
r:
i.,rjr,?
-
.r:
:
.:l:-,:.,,
.:.,'
i :.
;:,,."
L,au
,1
I
x'
I
rl
/t . ,^
ll;c.(.,)
pn
rm
KSCL
DAr
HQC
NAM 20:-2LAN
]'HrJ'I
MOn:
TOAN;
tcnOi
g
] 1!.'::
I. PHAN
CHUNG
:
1.
Khio
s6t
sU
bi6n thi6n
vd v6
dO thi
(C)
cua
hdm s6
(t).
",,,'2"
Cho di6m
Mthu6c
dO thi
(C)
co
xM
=m.Tlm
c6c
giltrf
thUc
ciratham
s6 *
de
tiep
tuy6n
tai
M
cit
d6 thi
(C)
tai
hai di€m
phAn
bi6r
A. B sao cho
MA:3MB
(B
nirn gifr'a
A vn
M).
-
=
J
Jt-
{'iu
II
(2,0
ttihnt)
\
L=
i
.
Gi6i
phuong
trinh:
4sin2
x.cos
x
-Zsinzx
-sin"
=
.or" \
;:.
Ciei
bAt
phuong
tr:inh:
*'.2"
+
x.z"nt
+IZ <3.2"
+ 4x2
+gx .
Cfru
III
1l,b
mAnr)
lllr'
gi6i
han
,
=
SYa
Cf,u
IV
(1,0
cli,dnt)
Cho
hinh
ch6p
S.ABCD
c6
d6y
ABCD
ld
hinh
vuOng
cpnh
bing a.
C4nh bOn
SA
vqdlg
g6c
'
!' r
-
"y
vA
SiA:
"Ji
.
Goi
B', D'
lAn
luqt ld
hinh
chi€u
w6ng
goc
cua ctiiim
l.
vOJ
lnat pltang
da
tr0n
canh
SB vA
SD.
Chirng
minh
rdng
cqnh
SC
vu6ng g6c
v6'i
m5t phing
(AB'D').
Gsi C'
ra giao
di6m
.uu
,oat
Jr'-L;;;t;;il;.
ffi,?;"r;;'ffitilj:16*;,;;::
:,:S
r*f5rsvurvurvL{cL.r.rraL}rudrrti\rrD
JJ
/
vulgalulDL.
lrnntllellcncllaKnoicnop).u'L.'D'.
*17
Cffu
Y
(100
tli6nt)
Cho
bas0thucldr6ngAm
x)y,zth6aman
x+y*z:Z0Iz,
Timgiritri
u#-
,rirAt
criabi6uthrc:
p
-{F(",*l|
.iFb}
+,).iF1;
.4>
,[b+V
I[.
]tI{41\
RIENG
(3,0
diam)
'.1'h{
sinh
clri
dngtc
chgn
nrpt
trong
hai. phfrn
A ho{c
B:
A.
'Ihco
chu'o'ng
frinll
chuin
(lf,rr
YIa.
(2.0
di\rn)
Trong
mdt phing
Oxy cho
di6m
Me;a)vd'ducrng
tr.on
(C)
c'o
phirong
tniih:
x'
+
y'
=2x
*
6y +
6
=
0.
i.l.
Vi6t phuorrg
tr"inh
duong
thdng
d
di
qua
ditim
M
cit
ducrng
tron
(C)
rai hai
di6rrr
p.
e
1r
sao
cho
M la
trung
di6m
cua PQ.
)(1Y
-0=
D
2. vi6t
phuong
trinh
duong
trdn
(c')
d6i
x#g uii
ao*g
troq(c
)
quu
di6m
M.
Cffu
VIIa .(1,0
di\nl
Chrmg
minh ring:
\^-J)
+
(t-
{)
=
+
(zn+1)3"
=2'".C),, 1+2.22,-,.Cln*,+3.22,-2.C:,,*r
* ,
+(2n+t)cliil(r-*),
*f
+["T
;
lu
lc^a
L1'.fi)U{l;D-)
\'l
L
Tld'i gian
ldm
bdi; 180 philt,
kh6ng
k€ thdt gian phdt
di
D0
g6m:
02 trang
crro
rAr
cA
cAc
rni
srNH
(7,0
diam)
r
(2,0
ili\m)Cho
hdm
s6
y
-
-t
+3*'
-!
(t).
'22\-'l-
Trung Il2
www.VNMATH.com
oii.,rrung
rn4t
phang
Oxy,
cho tam
gi6c'ABC'c6 A(l;3). Ducrng
phdn
gi6c
trong
cria
goc
B
:nim
tr6n duong thing
d,
c6
phuong trinh ld: x
-
y
-l
=
0 va'dulng
"uo
*n6t
ph6t
tt
dinh C
lina*
tr6n ducmg th8ng drc6
phucrng
trinh lA:x
+ 3y
+ 2- 0
.
Vi6trphuong
trinh
duhng
thang
::.i i,"
i:
r.
l"r.:.'j:',
2 2
:
0"'"
2.Cho elfp
(E):
l* *
=t,
gqi
F,( ;0)
'-'.,.
r
\
/
25 16
,.r ,cho
dO ddi
FrM co
gi6
tri 16n
nnat.
.
Cf,u
VIIb.
(1,0
itidm) Cho
mQt
da
gi6c
l6y trr
3 trong 32
di6m Ar, Az, ,
A:z
tlat
canh
cita
da
gi6c
l6i ArA2. An.
':
I
' ::,:, i,
r
I
i
i{,.
.F
+cfwri
rr.,
',.
-
'-
.Jl.l
:';
l
l. .,
.
ilr
'l
bao
nhi6u
tam
gi6c
c6 ba
dinh
lutn
gi6c
khdng
c6 cqnh
nho lir
.chria
cpnh
BC
cira tetm
gi6c
ABC.
*-
ly-q>O
:
,:
ld,mQt ti€u
di6m
cira
(E).
Tim
di6m
M tr6n
(E)
sao
[t
'4
l6i
ArA2 A:2.
Hoi c6
sao cho mdi canh cira
frrq
L.rE'T]
lrri I
(Cdn
bd
coi
thi
khdng
gidi thich
gi
th€m)
Trang2/2
I.j
!
-rl
I
www.VNMATH.com
I.
(1,0
tli1m
2.
(1
iti
PAp
AN
VA
THANG
EIEM
,T
I
'(2
ili0m
)
T0px6cdinh:
D=R,
Su
bi6n
thi6n:
-
Chi6u
bi6n
thi6n:
!'=
-2x3
+
6x;
!'=0g;s=0;
x= rE
hoAc
x=$.
Hdm
'6
AOng
bi6n
trdn
c6c
kho6n*
(-*' 6)
va
(o;"-6);
nehich
bicn
tron
c6c
khoang
(-16'o)
va
( 6;**).
-
CUc tri:
Hdrm
sO dat
cuc
dpi
t4r
x=
,6
vdL
x:
1f,
1
lcn
=
4 .
Hdm
sO
dat
cgc
ti6u
tpi
x:0
vd
lcr
-
Gi6i
han:
lim y:
lim
!
=-oo.
-t-+-co
x-)+o
-
BAng
bi€n
thi6n
r
DO thi
Ta c6
diOrn
0,25',
4,25
4,25
0,25
I
2'
+
:
0
-
0
,+
'0.',,_
Phuong
trinh
ti6p
tuyiln
ei
M:
!
=
-Zm(^'
-3)x+
|*-
*U*,
*I
.
AL
Xdt phuong
trinh
hodnh
d9 giao
dii5m:
-^4
1
-**
3xz
-l=-z*(,n'
-3)x+
1*^
-3,r' -!.
2
2
2'
z',
Trang
Il7
www.VNMATH.com
<+
(,
-
*)'
(r'
f*=*
.'-tt I
L"t
+Zmx
+
-6)=o
(-)'
EAt
/(x)
=
x2 1-
2mx +3m2
-
6
-
Ti0p
tuy6n
t4i
M clt
1C;
t4i
2 di6rn A,
B
phdn
bi6t kh6c M khi vd clii khi
phucrng
trinh
(*)
c6 2 nghiQm
ph6n
bipt kh6c
m,
hay
:
Iaco:
'
l*n'*u
:3m2
-
6
(t.z)
Do IWt
:
3MB vd
B nim
gitaA
vd
M n6n
M{
=
3MB
,
tri d6 suy
ra :
1-
-?-
-_1
-^fr
r\
""A
-
)xB
=
-2m
0.:)
rr
(1.1),
(r
.rr,rr,r)^?::r)r*r*
[".
:
_2m
),i,,*"=r*'-u
*l;:
=Q
I"
"
l'6
1",
-
3x,
:
-2nt
l* -
tJt
Do vAy
*
=
-Ji;
m:J7
(tnOu
mdn didu
kiQn
(**)).
YQy m
=
-Ji
;
m
=
rlz n
cilc
gi|tri
cAn tim.
Ta c6: 4sin2
x.cos
x
-
Zsin2x
-
sinx
=
cosx
{+ cos"(4rin"
-
1)- sinx(zsinx
+ 1)=
g
<*
(zsinx
+
l)[cosx(2sin"
-
1)- sin*]
=
o
e (2sinx + t)[zcosx.sinx
*
(cosx
+
sinx)]
-
o
l1
lsinx
(l)
c+l
2
[z
,o,
x. sin x
-
(cos x +:sin .r)
-
0
(2)
Giai
(1):
(tr
e z) .
(th6a
mdn).
,
Gi6i
(2):
2cosx.sinx
-
(cosx
+
sinx)= 0
-r
2rnx +3rnz
3m2
-6=0
(2,0
*.4 \
Cllem)
1.4,.'t1t
iiiii,f
:,1
T
I
* L+kur
sinx=-t
ol
6
2
I
*=A+k2n
L6
Trang2lT
4,25
www.VNMATH.com
!i':
,,
:
+2sinr.cos
*=t'-'1.
Khi
d6,
(2)
tro
thinh
t2
-
t-
I
=
0 e t
-LS
2
Taco:
.or["-z'']-1-S
(""
4
)
2J,
I
*=o
-u,""or[t-f.)
+k2n
|
4
\zJz)
el
) ,_'.,
,(k=z).6naamdn)
l*-o*ur".orf!-fl
+kzn
|
4
\2J2)
Vpy
phuong
trinh
dE cho
c6 c6c
nghigm
ln
*=
-1+
k2n,
*
=!+
k2tr,
x=L-
ur""orf!:gl
+ katr,
6
6
4
-[zJz
)
'
n
(t
r-\
.rr=1+arccosl
-^
p
l+kzn
(kez)
4
lzJz)
\
J,25
*,25
2.
(1,0
clidm)
Ta
c6:
*'.2" +
x.2"*1
+r2 <3.2*'
+ 4x2 +Bx
o
*'.2"' +2.x.2"
+12-3.2*'
-4x2
-Bx<o
e 2*'
(x'
+ 2x
3) a.(*t
+ 2x
3) .
0
o
(r'
+2x
-t)(r'
-
o) .
o
l*'"*2'x'-3<o [-3<x<1
1
ci I
-
<+'-3<rc<-Ji.
lzu
-4>o
[l'l'.D
Truong
hgp
2:
,
^
llx<-3
[*'*Zx-3>o ll'"-
-
1"",-'"
<+{1"t1
<+I<*<Ji.
l2*
_4<o
[u.o
Vfly tap
nghiQm'cfra
bdt
phuong
trinh
dd
cho
ld
S
=
(-:; ,n)
,
(r;rD
)
,
i],25
l
+,25
]
I
l
,).2s
1
'* l
l
r.),25
]
ili
(l,r)
di6m)
1,0 &i6m
Ddt r=
lleea
_
1
997
+997
x
n1t
'J
yLJ
Trung3/7
www.VNMATH.com
I\/
,(1ro
,di6m)
Khi
x-+0
thi t-+1.
Dovfly
r=1,T?
W+=lig
997
997
i
1994 2lee3 +tteez
+ +r+1
vay
L=r
2'
0,25
I
0,25
0,25
1,0
fri4nt
*
sc
-1,(da'D')
laco:
BC
LAB
sa t(encn)*
srl
a BC LAB,
Mi lB'r
^s,
, ur]
*
BC'
L(s'll)
+
AB'L
(SBC)
+ AB'
I
SC .
Chrmg
minh
tucrng
tg,
ta co
=+
AD'L SC .
Do
d6,
,sc
r
(aa'n')
I
{,.
ta-
\^'
Ir
pl1
r'\
j
I
t
',
\::
lt::::
t |.l
, *-*
i
.+',1>/
I
tt
/\'
i,: ,l
',
0,25
0,25
*
Tinh
th6
tich cria kh6i chop
S.B'C'D'
Trong
tam
gi6c
vu6ng
SAB,
ta c6
AB
=
a,
SA
=
ali,
SB
=
ali vd
AB'L SB
o t2
zall
Suy ra SB':
ot
=
^sB
3
,Jj
:
)
n,li
Tuong
ty SD'=
'-J
Ke eC'
tsc
.+
,4C' .
(eA'
n')
.
M[t
khdc, tam
gi6c
SAC
li tam
gi6c
vu6ng cdn n6n
C'
li trung
di6m cria
SC, do do SC'= rz.
zali zalj
Ia
co
v'
u.r,o,
_.sB'.sc'.sD'
=
I
='o'
'
Irr.oro
,SB.,SC.,SD
oJS.Zo.oJi
2
9
0,25
t'ad.
vs
BCD
=!
stIBC"BD
=o'-&-
(d.v.t.t)
suy
ra
v,
u,,,o,
=t
+
=
+(d.v.t.t).
0,25
V
(1,0
*. ;.
cjrenu
1,0 iti6m
V6i vi,
y
2 o ta lu6n
co
(*
-
y)'(x
+
y)
> o
o
("'
-
r')(*+y)>
o Vx,y
2
o.
<+ x'+
),t
2xzy+xy'
e:.("'*
yt)>1.(*ty+xy')
lu
i
(1,0
I *.;.
I
cjren
I
I
I
I
l
i,
I
I
:.
I
Trang4lT
www.VNMATH.com
n 4.(*'
+y')> (r*y)r-
e'.fi7[r*r]
>2(**y).
Tucrng
tg
ta c6:
,.fiZp'
+
"J
>-z(y
+
z)
,S7pt;;,
>2(z+x).
0,25
4,25
Do
d6,
P
>-a(x+
y
+ t)
ep
>
8048.
D6.u ':'
xay
rakhi
vA
chi
khi
x
=
!
=
,
='Or"
.
vfy
gi6
tri
nho
nh6t
cua
bi6u
thric
r
uirs@thi
vd chi
khi
20t2
e-
y-L
-a
J
4,2:5
.
4,25
VIa.
l.
(1,0
cti6m)
Dulng
tron (C)
c6
t6m
I(1;3),
b6n
kinh
R:2.
Md
IM
:
Jr<R
+
M ndm.trong
dulng
trdn (C).
Dunng
thing.qua
M
lu6n
cdt
du*g
trdn
(c)
tai
2
di€m
phan
biet
p,
e.
Dc
M le
trung
di€m
cria
pe
th\
pe
t
tit .
Duong
ina"e
pq
di
il;
M ,'ha;lfr:f]
;
r
i
u*
16; tr
pi;ap
i"t&.
-T-
;6*'
phuong
trinh:
€>
Jr+
y-6=0.
VAy
phucrng
trinh
duong
thlng,cAn
tim
ld
x +
y
-6
=
0
,
0,25
a,25
5,r5-
'Jr25
2.
(1,0
itihni
Eucrrrg
trdn
(C)
c6
tAm
I(1;3)
vd
b6n
kinh R:
2.
Gqitdm
cua
dudng
trdn
(C')
le I'
vd
bdn kinh
cua
(C')
la
R', ta co
Md
M(2;4)
:+i
<+{'
.
€I'(3;5).
1 /,'
=
ZYr
-
Y,
lY,,=
5
-
Vpyphuongtrinhcila.dudngtrdn(C,):(,_3),+(y_5),=4
fi,lr-
^r25'
t)"25
VIIa.
1,0
di4m
:* :"-l
I
T
a c6
:
(2 +
*)"*r
=
Cln*r22n+1
*
C),*rZ2'
x *
Cl,*rTzn-t
*2 *
:
. . *
Cl:il *r,.t
.
LAy
dao
hdm
2 u6
tu duoc:
(Zn+f
)(Z
+
*)'"
=
C),*,2'".+2.C1,u22"-t
*+
+
(Zn
+t)Ci;ilx,,
Clrgn
x
=7ta
duoc:
(zn
+ l)3"
=
C)nnt22"
+ Z.Cl,*,22n-t
*
3.C|,u22n-2
* +
(zn
+
t)
ciiil.
e
(2n+r)32"
-22",c),*t
+2.22'1.C|,*r+3.22n-2.C\,*r+ +
(zn+r)c::i:.(r.
ru).
0,25
tii,25
I
"-****l
,)
-'){
i
0.25
i
VIb.
1.
(1.0
cli€m
Trang 517
www.VNMATH.com
t*t:.J1lli:i.f
,,.
Si.i:?.i+r:
'.'.:,i
l' l;';:
'
;. r
iF.;Y+jr.''1
iiir').'tL.t':
i:.1
i."i.,
t.
'.
;.,t
:
.
iii.'-i
i.:;,
,.
li;;,r.,::
:
!r+_;l.i
t-"-
.: r I r
iijls;,liri.
i.:.j,-ii.
, ;','
i-rliii:.li;:.
.i::
,;!*iji:::1.,,i,.
l,
.:'
:: r'
' ,t ;;.,
. I
i*i)l:J.
i
".*,:;,',,t'
i:i!:
j,:.
:
'i.;1.,L.'.;
.:!,,
EZ.,!.rij
:f:.i:.i.:lr
';
r
r
"'l
,t
')
'j
(2,,,A
di6m)
ij.
Gc.ri A' ld
di6m ddi xring vdi A
qua
dr.
Phuong
trinh duong thing d di
qua
A vh
vu6ng
g6c
vdi dlco
dqng
x+y+c=0.
Md A thudc
d ndn ta co e:
-4.
Do c16,
phu<rng
trinh cira dudng th[ng d:
x+
y-4=0.
\
4,25
Gqi
I ld
giao
di6m cira
d1
vd d.
I(hi
d6,
to?
d0
cria I ld nghiQm cua h9
phuong
trinh:
f ." _s
(r*y-4=0
l'-t
,(5
3)
I
"
<+{ eIl
-:-1.
lx-v-1=0 I 3 \2'2)
\
r'
Iy=-
t-2
Do
d6,
tqa d0 cua
A'(4;0).
0,25
Ta
co
cl2
vu6ng
g6c
vdi AB
n6n
phucrng
trinh cria
dubng
th6ng AB
c6
dang
3x-y+c'=0,
Do A thuQc ducrng thdng
AB n6n ta
tinh dugc c'
:
0.
Phuong trinh cira dubng
thang AC: 3x
*.!
=
0.
0,25
D" B it
gilo
die;iCtri
AJmg
thdng d1
vli ducrng thing AB n6ntos
clQ
cria
B 1A nghiQm cua hQ
phucrng
trinh:
r_ _
I
[3r-v=o
l" ;
(
1 3\
{
r
Y
€{
L
<+Bl
-l:-"1.
L* ,,-1=0
-
1
3
-
"t,
2'
2)'
I V
-
"t'2
Mil A'
ln
diOm d6i xirng
vdi
A
qua
d1 n€n A' thuQc'ducmg thing
BC.'
V4y
phuong
trinh
cria
duong
thlng BC: x
-3y
-4
=
0.
.
0,25
2;
(1.A
di€m)
Ta c6
c:3;
Ggi
4M'=
(x
+
3)2
^
{
Suvra
F,M
=|x+5.
JI
)
M(x;y)
thuQc
(E).
-,
(3
-\'
*y'-l
;x+5 |
\5 )
0,25
0,25
Do MthuQc elip
(E)
n6n
-5
(x (
5 + 2s
4M
<8.
Do
viy, F,M
sg. Diiu
':'
x6y
ra
khi vd chi khi x: 5.
Vdv d0
tliri
cua doan FrM
dat
ei|tri
lcrn nh6t
khi vd chi khi M(5;0).
0,25.
4,25
VIIb.
1,0 diiirn
1,0 cti6m
+)S6tamgi6cc63dinhld3trongs632dinhcfiadagi6cl6iddchold
9jz:129!.0: * *.
;iffi
atim Jdtu*
siil;6
t C?nh;t f
.a"n
ia;e"h;,fi:du
eia"
i6i i:i:-
*
canh.
4,25
0,25
Trang6lT
www.VNMATH.com
Trang 717
www.VNMATH.com