Tải bản đầy đủ (.ppt) (13 trang)

giới hạn của hàm số

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (135.69 KB, 13 trang )






 

 
n
n

+


 
 

 

n
n
n
n


=
+
+

 
  



  
 
n
n


= = =
+
+








 !"#"$#%&
 !"#"$#%&


 !
 !
x
x
"#$%&'$()*+,
"#$%&'$()*+,
x
x



(
(
x
x






x
x
x
x
1
1
=
=


-
-




f(x)
f(x)

f(x
f(x
1
1
)
)
f(x
f(x
2
2
)
)
f(x
f(x
3
3
)
)
f(x
f(x
4
4
)
)


f(x
f(x
n
n

)
)
-
-


.
.
 , 
, 

x x
f x
x

=




x =



x =

/

x =


n
n
x
n
+
=
 01
 
,  
n n
n
f x x
n
+
= =
2
 , 
n
f x



2
324'5
6
,x
n
(x
n
73

x
n
8(
9:f(x)
'x;<
 
 ,  
n
n
f x
n
+
=
01324
'5
6
,x
n
(x
n
73x
n
8(
f(x
n
)8
 
  
 
 

n n
+ +
= = =
 , 
 ,  

n n
n
n
x x
f x
x

=

 < < 
n n
x x= = = =
 , 
 
,  

n n
n n
n
x x
n
f x x
x n


+
= = =

=>?@?A@BC,DA9
=>?@?A@BC,DA9
EF<0G<
EF<0G<


@:GH$:&%I
@:GH$:&%I


JKL
JKL
AMN,
AMN,
x
x
n
n
24'OP
24'OP
x
x
n
n
7
7
3

3
x
x
n
n


'
'
→+
→+







 , 
x x
f x L

=

Q , , 
 
 
n n n
n n
x x x

x x
− + −
=
− −

Q
, 

x
f x
x

=


 , 
x
f x

 , 
n
f x =

 ,  R
x
f x

=
E)
,    R

n
x= + = + =
0GST



@:GH$:&%I
@:GH$:&%I


JKUL
JKUL
AMN,
AMN,
x
x
n
n
24'OP
24'OP
x
x
n
n
7
7
U3
U3
x
x

n
n


U'
U'
n→+
n→+




, U U U R
n
x= + = + =

R
, 
U
x
f x
x

=

U
 , 
x
f x



R , U, U
 
U U
n n n
n n
x x x
x x
− + −
=
− −
 , 
n
f x =
E)
U
 ,  R
x
f x

=
 !"#'()*$+#,"# #,"
 !"#'()*$+#,"# #,"
=&
=&
AMN3<9:
AMN3<9:
2?!V
2?!V
f(x)

f(x)
W
W
3(5
3(5
L
L
W
W
3
3
?)H,c X
 

 Y 
x x x x
x x c c
→ →
= =
!VM7

 , 
x x
f x L

=

 , 
x x
g x M


=

 Z ,  , [
x x
f x g x L M

+ = +

 Z ,  , [
x x
f x g x L M

− = −

 Z , < , [ <
x x
f x g x L M

=

 , 
x x
f x L

=

, 

, 

x x
f x L
g x M

=

 , 
x x
f x L

=




EF<
 0G

20G


 , 
x
f x

 
, 
 
x
f x

x

=


 
, 

x x
g x
x
− +
=


 , 
x
g x




2

 

, 
 
 ,  
  , 

x
x x
x
x
x
f x
x x

→ →



= =
− −


< 
< 

<  < 
x
x
x
x




= = =
− −


 
 
 ,  

x x
x x
g x
x
→ →
− +
=


, , 


x
x x
x

− −
=

 
,      
x x
x x
→ →
= − = − = − = −

MTcsofx
5\1x

/0x12
@\x
1
324x
2
3
E)x

/0x1235x/65x/26
?3
0G

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
?3
0G


AM
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
AM
 
, , 
 , 

x x
x x
x

x
→ →
− +
= = +


    
x
x

= + = + =
 
 
,   
,  < 
x x
x x
x x
x x
→ →
→ →
− −
= =
+ +
  
<  /
− −
= =
+


, 
 
x
f x
x

=
+

 , 
x
f x

 

 ,  
 
x x
x
f x
x
→ →

=
+




, 


x x
g x
x
− −
=


 , 
x
g x


 

 ,  

x x
x x
g x
x
→ →
− −
=

=>?@?A@BC
=>?@?A@BC
^0G
^0G
y =

y =


f(x)
f(x)
H$:&%I'GM,
H$:&%I'GM,
x
x
o
o
Y
Y
b
b
<
<


L
L
:_`a
:_`a
gii hn bên phi
gii hn bên phi




y = f(x)

y = f(x)
'
'
x
x


x
x
0
0
!V
!V
3,
3,
x
x
n
n
24'5(
24'5(
x
x
0
0
< x
< x
n
n
<b

<b
3
3
x
x
n
n


x
x
0
0
(
(
f(x
f(x
n
n
)
)


L
L
<
<
9\V
9\V
2 +#,"789:;"


 , 
x x
f x L
+

=
^0Gy =f(x)H$:&%I'GM,a ; x
o
<
L:_`agii hn bên tri y = f(x)'x

x
0
!V
3,x
n
24'5(a<x
n
bx
0
3x
n

x
0
(f(x
n
)


L<
9\V

 , 
x x
f x L


=
x
0
b
x

x x
+

x
0
a
x

x x


=>?@cd
=>?@cd


'3e'

'3e'


 , 
x x
f x L

=
 
 ,   , 
x x x x
f x f x L
− +
→ →
= =
EV0G
3
2,@G:+$:&a:ff(x) xg



 , 
x
f x
+


 , 
x
f x



 
, 
 b
ax x
f x
x x
+ ≥

=



!V
!V
 
 ,  ,    
x x
f x x
− −
→ →
= − = − = −
 
 ,  ,  
x x
f x ax a
+ +
→ →
= + = +

 
 ,   , 
  
x x
f x f x
a a
− +
→ →
=
⇔ + = − ⇔ = −
2=ff(x)x =5
 !"#'()*$+#,"# #,"
 !"#'()*$+#,"# #,"
=&
=&
AMN3<9:
AMN3<9:
2?!V
2?!V
f(x)
f(x)
W
W
3(5
3(5
L
L
W
W
3

3
?)H,c X
 

 Y 
x x x x
x x c c
→ →
= =
!VM7

 , 
x x
f x L

=

 , 
x x
g x M

=

 Z ,  , [
x x
f x g x L M

+ = +

 Z ,  , [

x x
f x g x L M

− = −

 Z , < , [ <
x x
f x g x L M

=

 , 
x x
f x L

=

, 

, 
x x
f x L
g x M

=

 , 
x x
f x L


=




<"$=>
?+"$@A":9BC)*"#
 
 $:&a:ff(x)xg

IV 
, 
 IV b
x x
f x
ax x

+ ≥
=





 


x
x x
x


− +


0G

2$:&a:ff(x) xg
UIV 
, 
IV b
x x
f x
ax x
+ ≥

=

+


 , 
x
f x



 , 
x
f x
+


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×