SỞ GD&ĐT THANH HÓA
TRƯỜNG THPT YÊN ĐỊNH 2
SÁNG KIẾN KINH NGHIỆM
TÊN ĐỀ TÀI:
Thiết kế bài dạy, tổ chức các hoạt động trên lớp góp
phần phát huy tính tích cực, chủ động trong học tập
mơn Tốn của học sinh THPT
Họ và tên: Lê Khắc Khuyến
Chức vụ: Tổ trưởng chun mơn Tốn- Tin
Đơn vị công tác: Trường THPT Yên Định 2
SKKN thuộc mơn: Tốn
Năm học 2011-2012
A. ĐẶT VẤN ĐỀ
I/. LỜI MỞ ĐẦU:
“ Dạy học là một nghệ thuật”. Dạy học mơn Tốn là nghệ thuật chưa đủ
mà còn là khoa học về truyền thụ, khoa học về dạy người. Để làm tốt nhiệm vụ
cao cả mà nhân dân giao phó, học sinh tin yêu người thầy giáo phải giỏi cả về
năng lực nhận thức và năng lực truyền thụ.Với chương trình cải cách đòi hỏi
người thầy phải chuẩn bị chu đáo bài dạy, tổ chức tốt các hoạt động trên lớp
theo hướng “Phát hiện và giải quyết vấn đề”, kết hợp nhiều phương pháp giảng
dạy. Cùng với sự hỗ trợ của công nghệ thơng tin giúp thầy giáo dạy Tốn có đủ
điều kiện làm cho giờ dạy đảm bảo tốt các yêu cầu mơn học, học sinh tích cực,
chủ động trong học tập, giờ học Tốn khơng khơ khan.
II/ PHẠM VI NGHIÊN CỨU:
1. Thiết kế bài dạy mơn Tốn
2. Tổ chức các hoạt động trên lớp
III/ ĐỐI TƯỢNG NGHIÊN CỨU:
Học sinh khối THPT hệ công lập cả 3 khối 10, 11, 12
IV/ PHƯƠNG PHÁP NGHIÊN CỨU:
1. Nghiên cứu lý luận dạy học
2. Thực hành qua việc chuẩn bị nội dung bài dạy
3. Thực hành qua các bài dạy
4. Tổng kết, đánh giá qua 2 năm học 2010-2011 trên đối tượng là học
sinh các lớp: 10B1; 10B3: Ban KHTN; 10B5: Ban cơ bản.
Năm học 2011-2012: Trên đối tượng là học sinh các lớp: 11B1, 11B3:
Ban KHTN; 11B7: Ban cơ bản trường THPT Yên Định 2.
B. GIẢI QUYẾT VẤN ĐỀ
Chương I:
THIẾT KẾ BÀI DẠY
I/ Mục tiêu:
1. Về kiến thức: - Xác định rõ các đơn vị kiến thức phải được truyền tải
trong tiết học theo chuẩn kiến thức môn Toán mà Bộ GD&ĐT đã ban hành
- Kiến thức trọng tâm mà học sinh phải lĩnh hội được.
2. Về kỹ năng: - Nêu rõ các yêu cầu về kỹ năng mà học sinh phải đạt
được. Ví dụ: Tính tốn, vẽ hình biểu diễn của một hình khơng gian, vẽ đồ thị,…
v…v….
3. Về tư duy, thái độ: - Nêu các khả năng rèn luyện tư duy
- Thái độ trong quá trình tiếp thu: Tích cực, chủ động, sáng tạo trong tiếp thu
kiến thức
II/. Chuẩn bị của giáo viên và học sinh:
1. Chuẩn bị của học sinh: Đây là nội dung mà thầy giáo phải thông báo
trước cho học sinh trước khi học bài mới. Nó bao hàm cả ý thức, tâm thế chuẩn
bị để học bài. Việc chuẩn bị này gồm nhiều công việc: Học bài cũ và nghiên cứu
các kiến thức liên quan đến bài mới. Chuẩn bị bài tập nếu là tiết bài tập, về phần
này tơi đã trình bày trong đề tài về “Đổi mới công tác kiểm tra đánh giá mơn
Tốn trong trương THPT….”. Học sinh cũng phải chuẩn bị cả về dụng cụ học
tập phục vụ môn học: Thước kẻ, com pa, MTBT, USB nếu là các thơng tin phải
trình chiếu qua máy chiếu.
2. Chuẩn bị của giáo viên: Để tiến trình bài học được tốt dĩ nhiên giáo
viên phải chuẩn bị bài soạn của tiết dạy đó. Ngồi ra để việc ứng dụng cơng
nghệ thơng tin được tốt phải chuẩn bị máy tính, projeter, ứng dụng các phần
mềm minh họa cho bài giảng.Để thực hiện đa dạng các phương pháp dạy học
nên có thêm phiếu học tập theo nhóm, phiếu điều tra kết quả nếu là tiết thực
hành đo đạc, tính tốn
III/.Phương pháp:
1. Căn cứ vào nội dung bài học, số lượng đơn vị kiến thức phải chuyển tải
trong tiết dạy để sử dụng các phương pháp dạy học
2.Việc sử dụng các phương pháp, thao tác dạy học phải được giáo viên
định hướng trước trong khi chuẩn bị
IV/. Tiến trình bài học:
1. Đây là phần quan trọng nhất của việc chuẩn bị bài dạy
2.Tùy thuộc đơn vị kiến thức của bài học để tổ chức các hoạt động học tập
( Phần này được đề cập chi tiết ở chương II của đề tài này).
3. Cấu trúc bài dạy của phần này có thể chia cột hoặc trình bày theo tính
liên tục của bài dạy. Thường cấu trúc của phần này nên chia thành 3 cột: Hoạt
động của giáo viên; Hoạt động của học sinh; Nội dung các hoạt động.
4. Chuẩn bị các hoạt động (HĐ), hoạt động thành phần (HĐTP)
5. Mỗi HĐ để hoàn thành một đơn vị kiến thức của bài dạy; HĐTP để
hoàn thành một HĐ đã đề ra.
6. Trong mỗi HĐ và HĐTP nên phân bổ thời gian hợp lý để hoàn thành
HĐ hoặc HĐTP đó.
7. Việc phối hợp linh hoạt các phương pháp giảng dạy trong từng HĐ
hoặc HĐTP là quan trọng đảm bảo học sinh phải chủ động, tích cực lĩnh hội
kiến thức.
8.Khi phân chia các HĐ hoặc HĐTP trong bài soạn giáo viên nên lưu ý
đến đối tượng cụ thể của từng đơn vị lớp: giỏi, khá, trung bình, yếu kém, thậm
chí cả tỷ lệ trong từng lớp của đối tượng học sinh nữa
9. Vì vậy với cùng một số đơn vị kiến thức việc phân chia HĐTP và thời
gian cho mỗi HĐ, HĐTP sẽ khác nhau ở các ban học, lớp học và có thể đến
nhóm trong các HĐ nhóm.
10.Việc thay đổi thời gian cho mỗi HĐ, HĐTP trong tiến trình tổ chức giờ
học không nên quá 10% so với dự kiến, dĩ nhiên là không cho phép tất cả các
HĐ tăng thêm. Vì điều này khơng được chuẩn bị tốt sẽ làm mất đi thời gian của
một số HĐ hoặc HĐTP, kiến thức trọng tâm của bài sẽ không được chuyển tải
hết hoặc chuyển tải sơ sài dẫn đến chất lượng bài học thấp.
Một số ví dụ:
Trong phần này tơi xin nêu một vài ví dụ về thiết kế bài dạy đảm bảo các
yêu cầu trên. Việc này giáo viên đã được nắm vững trong các chuyên đề của Bộ
GD&ĐT về chương trình và SGK nhiều năm qua. Tơi đưa ra hai ví dụ về việc
thiết kế số cột có thể khác nhau, giáo viên có thể xác định trước các HĐ, HĐTP
đẻ các đồng nghiệp tham khảo.
Ví dụ 1: Tiết số 39. BIẾN NGẪU NHIÊN RỜI RẠC (Tiết 1) (Đại số và giải
tích lớp 11 nâng cao)
I. Mục tiêu:
1. Về kiến thức: Giúp học sinh:
* Hiểu thế nào là một biến ngẫu nhiên rời rạc
* Hiểu và đọc được bảng phân bố xác suất của biến ngẫu nhiên rời rạc
X
2. Về kỹ năng:
* Biết cách lập bảng phân bố xác suất của một biến ngẫu nhiên rời rạc.
* Biết cách tính xác suất liên quan tới một biến ngẫu nhiên rời rạc từ
bảng phân bố xác suất của nó.
3. Về tư duy, thái độ:
* Rèn luyện tư duy lô gic, linh hoạt
* Biết quy lạ về quen, biết liên hệ với các kiến thức cũ
* Thấy được sự liên hệ với thực tế và khả năng áp dụng toán học vào
thực tế suộc sống
II. Chuẩn bị của giáo viên và học sinh:
1. Học sinh:
*Ôn tập bài cũ các kiến thức liên quan: Không gian mẫu, biến cố và xác
suất của biến cố, các quy tắc tính xác suất
* Đọc bài mới
2. Giáo viên:
* Chuẩn bị bài giảng, câu hỏi cho từng HĐ,HĐTP
* Phiếu học tập cho H1 và H2
III. Phương pháp giảng dạy:
*Vấn đáp, gợi mở đan xen hoạt động nhóm
* Chia lớp học thành 4 nhóm theo 4 tổ học tập
* Dự kiến: Nhóm 1 thực hiện H1a); Nhóm 2 thực hiện H1b); Nhóm 3,4
thực hiện H2.
* Khi mỗi nhóm thực hiện nội dung u cầu của nhóm mình thì các
nhóm khác cũng có trách nhiệm theo dõi, đánh giá kết quả tạo khơng khí học tập
sơi nổi.
IV. Tiến trình bài học:
1. Ổn định lớp, kiểm tra số lượng học sinh tham dự tiết học, vệ sinh, tác
phong, đầu tóc, quần áo theo nội quy nhà trường đã được treo trong phịng
học(1’).
2. Kiểm tra bài cũ: khơng kiểm tra
3. Bài mới:
Hoạt động của giáo viên Hoạt động của học sinh
HĐ1: Khái niệm biến ngẫu nhiên rời rạc ( 10’)
HĐTP1: Giới thiệu ví dụ Trả lời 2 câu hỏi.
1 của SGK
Nội dung
1. Khái niệm biến ngẫu
Những học sinh khác cho nhiên rời rạc:
H: Giá trị của X thuộc tập nhận xét
GV ghi mục này lên
nào
bảng.
H: Ta có thể xác định
trước được giá trị của X
không.
HĐTP2: Tiếp cận định
nghĩa biến ngẫu nhiên rời
rạc
H: Thế nào là biến ngẫu
Tiếp cận định nghĩa
nhiên rời rạc
(SGK)
HĐ2: Phân bố xác suất của biến ngẫu nhiên rời rạc (30’)
HĐTP1: Giới thiệu bảng
2. Phân bố xác suất của
phân bố xác suất của biến Trả lời các câu hỏi
biến ngẫu nhiên rời rạc
ngẫu nhiên rời rạc X
Học sinh khác nhận xét
Kẻ bảng 1 và điều kiện
H: Em hãy nêu cấu tạo
của bảng và các thơng tin
trong bảng
Nhóm 1, nhóm 2 cử đại
H: Em có nhận xét gì về
diện trình bày.
tổng p1 + p2 + ... + pn
Nhóm 3, nhóm 4 chú ý
HĐTP2: Giới thiệu ví dụ
và nhận xét kết quả.
2 SGK về bảng phân bố
Ghi kết quả đúng
xác suất.
H: Xác suất để tối thứ 7
trên đoạn đường A khơng
có vụ vi phạm luật giao
thông là bao nhiêu?
H: Xác suất để tối thứ 7
trên đoạn đường A xảy ra
nhiều nhất 2 vụ vi phạm
luật giao thơng là bao
nhiêu?
*Tổ chức hoạt động
nhóm
Ghi kết quả H1a) và
Giáo viên phát phiếu cho
H1b)
nhóm 1 trả lời H1a);
nhóm 2 trả lời H1b)
*Giáo viên nhấn mạnh
kết quả H1
HĐTP3: Học sinh xét ví
dụ 3
Mỗi học sinh tính một
H: Hãy tính P(X=0);
đại lượng
P(X=1); P(X=2) và
P(X=3)
Ghi các kết quả lên bảng
H: Số trường hợp có thể
Tính số trường hợp và
là bao nhiêu
ghi kết quả
H: Lập bảng phân bố xác
Lên bảng lập bảng phân
suất của X
bố xác suất
Để lại bảng phân bố xác
Hoạt động nhóm:
Nhóm 3 tính xong có kết
suất
Nhóm 3 tính P(X=2);
quả đúng
Ghi kết quả
P(X=3).
Nhóm 4 lập bảng
Ghi kết quả lên bảng
Nhóm 4: Lập bảng phân
Để lại bảng phân bố xác
bố xác suất của X
suất của X
HĐ3: Củng cố kiến thức(3’)
Nêu các bước lập bảng
Ghi các bước.
Ghi các bước thực hiện
phân bố xác suất
HĐ4: Hướng dẫn bài tập về nhà(1’)
Bài tập 43 – 46
Ví dụ 2: Tiết số 5:HIỆU CỦA HAI VEC TƠ ( Hình học lớp 10 nâng cao)
I. Mục tiêu:
1. Về kiến thức: Giúp học sinh:
* Nắm được định nghĩa vectơ đối của một vectơ
* Hiểu định nghĩa hiệu của hai vectơ
* Nắm được quy tắc hiệu của hai vectơ
2. Về kỹ năng:
*Biết xác định vectơ đối của một vectơ
*Biết cách dựng hiệu của hai vectơ
* Biết vận dụng thành thạo quy tắc về hiệu của hai vectơ.
3. Về tư duy và thái độ:
*Rèn luyện tư duy lô gic
* Rèn luyện trí tưởng tượng
*Biết quy lạ về quen
* Tính cẩn thận, chính xác trong lập luận, tính tốn
II. Chuẩn bị của giáo viên và học sinh:
1. Chuẩn bị của học sinh:
* Đồ dùng học tập: Com pa, thước kẻ,…
* Ôn tập bài cũ phần phép cộng vectơ
2. Chuẩn bị của giáo viên:
* Bài soạn
*Bảng phụ, thước kẻ bảng
* Phiếu học tập.
III. Phương pháp giảng dạy:
* Vấn đáp gợi mở đan xen hoạt động nhóm
IV. Tiến trình bài học :
1. Ổn định lớp, kiểm tra sĩ số, tác phong (1’)
2. Kiểm tra bài cũ: được thực hiện lồng ghép trong bài học
3. Bài mới:
Hoạt động của giáo viên
Hoạt động của học sinh
u u uu
ur u
r
HĐ1: Xét tổng của hai vectơ AB; BA ( 10’)
u u uu
ur u
r
HĐTP1: Tính AB + BA
Trả lời các câu hỏi
H: Hãy nêu các quy tắc công hai vec
Lớp nhận xét, đánh giá kết quả các
tơ?
câu trả lời
u u uu
ur u
r
H: Tính tổng AB + BA bằng quy tắc tam
Ghi các kết quả đúng sau khi giáo
giác?
viên chỉnh sửa
HĐTP2: Định nghĩa vectơ đối
uu
ur
uu
u
r
H: Nêu quan hệ giữa vectơ AB và BA
H: Phát biểu định nghĩa vectơ đối của
một vectơ?
H: Vectơ đối củauvectơu
không?
ur u r
u u
HĐ2: Tính hiệu AB − CB (30’)
uu uu
ur ur
HĐTP1: Chỉ rõ −CB = BC
Trả lời câu hỏi
H: Cho hình bình hành ABCD. Tìm
Nhận xét
uu
ur
uu
ur
mối liên hệ giữa AB và CD ?
Ghi kết quả
uu
ur
H: Từ đó nhận xét quan hệ giữa −CB và Từ định nghĩa vec tơ đối suy luận:
uu uu
ur ur
−CB = BC
uu
ur
BC ?
uu uu
ur ur
uu
ur
HĐTP2: Tính tổng: AB + BC = AC (*)
H: Với hai điểm B, C tìm vectơ bằng
uu
ur
BC ?
Trả lời câu hỏi
H: Hãy viết lại (*)
Rút ra kết luận: AB − CB = AC
HĐTP3: Phát biểu định nghĩa hiệu của
Ghi nhận định nghĩa
uu uu uu
ur ur ur
hai vectơ
H: Nêu định nghĩa hiệu của hai vectơ?
Giáo viên khẳng định phép lấy hiệu của
hai vectơ gọi là phép trừ hai vectơ
HĐTP4: Rèn luyện kỹ năng tính hiệu
của hai vectơ
H: Cho hình bình hành ABCD tâm O.
Đưa ra câu trả lời đúng và phân tích
Mỗi khẳng định sau đúng hay sai?
tại sao.
uu uu uu
ur ur ur
u u u u uu
ur ur u
r
a) OA − OB = AB. b)CO − OB = BA
uu uu uu
ur ur uu
r
uu uu uu
ur ur ur
c) AB − AD = AC. d ) AB − AD = BD
uu uu uu uu
ur ur ur ur
e)CD − CO = BD − BO
Giáo viên phân tích từng câu và khẳng
định lại tính đúng đắn
HĐTP5: Nêu quy tắc hiệu của hai vectơ
u ur
uu
H: Cho MN và một điểm O bất kỳ. Hãy
uu
uu
r
biểu thị vectơ MN theo các vectơ
u ur u u
u u ur
OM ; ON .
H: Nêu quy tắc hiệu của hai vectơ
Dựa vào định nghĩa biểu thị một
vectơ theo hai vectơ
Nêu quy tắc hiệu hai vectơ
HĐTP6: Cách dựng hiệu của hai vectơ
r r
H: Cho hai vectơ a; b . Hãy dựng hiệu
r r
a −b.
uu r r
u
r
H: Giải thích tại sao ta lại có: BA = a − b
Trả lời câu hỏi.
Thực hành trên bảng.
uu r uu r
ur
ur
Dựng OA = a; OB = b ( O bất kỳ) và
uu r r
u
r
?
chứng minh BA = a − b
HĐ3: Củng cố kiến thức, bài tập về nhà(4’)
r
Từng học sinh trả lời cáccâu hỏi.
H: Vectơ đối của vectơ −a là vectơ
Lớp nhận xét
nào?
H: Cho O là trung điểm của đoạn thẳng
uu uu r
ur ur
AB. Chứng minh rằng: OA + OB = 0
H: Cho 4 điểm A, B, C, D bất kỳ. Dùng
quy tắc hiệu của hai vectơ chứng minh
uu uu
ur ur
uu uu
ur ur
rằng: AB + CD = AD + CD
H: Cho ∆ABC .Dựng điểm D sao cho tứ
giác ABCD là hình bình hành
Bài tập: 15, 17, 18, 19 SGK
Chương II: TỔ CHỨC CÁC HOẠT ĐỘNG TRÊN LỚP
I. Tầm quan trọng của tổ chức các hoạt động trên lớp:
1.Chuẩn bị bài soạn, các công cụ bổ trợ trong dạy học chu đáo vẫn là
không đủ nếu giáo viên không thực hiện thành công ý tưởng ấy khi lên lớp và
kết quả bài dạy là khơng tốt thậm chí khơng mang lại kết quả gì
2. Việc dẫn dắt học sinh lĩnh hội kiến thức một cách tích cực, chủ động là
mục tiêu hướng tới bài dạy thành công.
II. Một số vấn đề về lý luận dạy học khi tổ chức các hoạt động trên lớp:
1. Một số khái niệm:
* Quy nạp: Quy nạp là từ những chân lý riêng lẻ, cụ thể, khái quát lên
thành một chân lý tổng quát. Quy nạp có thể dẫn đến những kết quả sai, vì vậy
trong tốn học không dùng quy nạp để chứng minh, trừ phép quy nạp tốn học
gọi là phép quy nạp hồn tồn ( phép truy chứng). Nhưng nó có thể dùng để phát
hiện vấn đề, để mày mị và dự đốn.
* Suy diễn là từ một chân lý khái quát, dùng các quy tắc của loogic hình
thức mà suy ra những hệ quả.
* Khái qt hóa: Theo G.Pơlya: “ Khái qt hóa là việc chuyển từ việc
nghiên cứu một tập hợp đối tượng đã cho đến việc nghiên cứu một tập hợp lớn
hơn bao gồm cả tập hợp ban đầu”.
* Đặc biệt hóa là việc chuyển từ việc nghiên cứu một tập hợp đối tượng
đã cho sang việc nghiên cứu một tập hợp những nhóm chứa trong tập hợp đã
cho.
* Phép tương tự là phép suy luận trong đó từ chỗ hai đối tượng giống
nhau ở một số dấu hiệu, ta rút ra kết luận rằng các đối tượng này giống nhau ở
các dấu hiệu khác.
2. Dạy học giải quyết vấn đề: Trong dạy học giải quyết vấn đề, thầy giáo
tạo ra những tình huống gợi vấn đề, điều khiển học sinh phát hiện vấn đề, hoạt
động tự giác và tích cực giải quyết vấn đề và thơng qua đó mà lĩnh hội tri thức,
rèn luyện kỹ năng và đạt được những mục đích học tập khác.
3. Chọn hình thức dạy học: Sau khi đã chuẩn bị bài soạn chu đáo thì việc
chọn hình thức dạy học phù hợp cho từng loại hoạt động đã được chuẩn bị ở
trên lớp là khâu quan trọng nhất. Nó quyết định chất lượng giờ dạy nói chung và
bộ mơn Tốn nói riêng. Sau đây tơi xin nêu một hình thức dạy học có tác dụng
lớn trong việc phát huy tính tích cực, chủ động trong học tập của học sinh.
Dạy học giải quyết vấn đề:
Tùy theo mức độ độc lập của học sinh trong quá trình giải quyết vấn đề,
để giáo viên lựa chọn hình thức dạy học cho phù hợp với đối tượng ở cấp độ
khác nhau:
- Tự nghiên cứu vấn đề
- Đàm thoại giải quyết vấn đề
- Thuyết trình giải quyết vấn đề
Mặc dù vậy trong một tiết học, trong từng hoạt động hoặc HĐTP có thể vận
dụng đồng thời các hình thức dạy học khác nhau và các hình thức dạy học khác
nhau để tạo hiệu quả cao nhất.
Thực chất của kiểu dạy học này là điều khiển quá trình học tập của học sinh: tiếp
cận định nghĩa, củng cố khái niệm, chứng minh định lý, giải các bài tập toán.
Tức là tổ chức các hoạt động trên lớp để tiếp thu các đơn vị kiến thức ấy.
Quá trình tổ chức các hoạt động được thực hiện qua các bước, trong mỗi bước
ấy do học sinh tự làm hoặc có sự gợi ý của thầy giáo, hoặc chỉ theo dõi sự trình
bày của thầy tùy thuộc vào sự lựa chọn cấp độ thích hợp của các hình thức dạy
hoạc đã nêu ở trên.
Bước 1: Tri giác vấn đề
- Giáo viên đưa ra yêu cầu bài học của từng HĐ: Định nghĩa, định lý, bài
toán cần giải quyết,…v….v…. yêu cầu học sinh giải quyết.
- Giáo viên có thể giải thích và chính xác hóa các u cầu để hiểu đúng.
Ví dụ: Để tiếp cận định nghĩa hiệu của hai vec tơ phải hình thành khái niệm vec
uu
ur
tơ đối giáo viên đưa ra vấn đề: cho một vec tơ AB hãy tìm một vec tơ để tổng
uu
ur
của nó và vec tơ AB bằng vec tơ- không.
Bước 2: Giải quyết vấn đề
- Phân tích vấn đề làm rõ nguyên lý, mối liên kết giữa cái đã biết và cái
chưa biết.
- Sử dụng các quy tắc tìm đốn và chiến lược nhận thức “ Quy lạ về
quen”, đặc biệt hóa, khái quát hóa, quy nạp, suy diễn tương tự,… có thể phải
làm nhiều lần. Mị mẫm, dự đốn đến khi tìm ra kết quả.
- Trình bày cách giải quyết vấn đề.
Bước 3:K iểm tra và nghiên cứu kết quả, lời giải.
- Kiểm tra tính đúng đắn và phù hợp với thực tế, tính hợp lý, tối ưu của
định nghĩa khái niệm, định lí, lời giải của bài tốn, khả năng ứng dụng của kết
quả,…
- Đề xuất những vấn đề mới có liên quan( tìm ra các kết quả mới).
Ví dụ: Từ phép toán cộng hai vec tơ đề xuất bài toán tổng quát cộng nhiều vec
tơ( Hình học lớp 10). Từ việc gieo 2 con xúc xắc có thể xét trường hợp nhiều
hơn 2,…v…v….
Ở trên lớp việc tổ chức các hoạt động học tập theo hướng này là một trong
những cách đem lại hiệu quả cao của bài dạy.
III. Ví dụ minh họa:
Sau đây tơi xin trình bày một ví dụ về tổ chức hoạt động trên lớp giải một
bài tập cụ thể
Bài toán 1: Cho a, b, c, d, e ∈ ( 0;1) . Chứng minh:
(1 − a )(1 − b)(1 − c)(1 − d )(1 − e) > 1 − a − b − c − d − e(1)
- Đối tượng dạy: Học sinh lớp 11 ban KHTN ( Lớp 11 B1 năm học 20112012) sau khi học phần Quy nạp tốn học (Đại số và giải tích 11 nâng cao)
- Hình thức tổ chức các hoạt động trên lớp: Kết hợp cả hai hình thức tự giải
quyết vấn đề và đàm thoại giải quyết vấn đề. Việc tổ chức các hoạt động như
sau:
Hoạt động của giáo viên
HĐ 1: Tri giác vấn đề
Yêu cầu học sinh giải bài
Hoạt động của học sinh
Giải quyết bài toán (1)
toán (1)
HĐ2: Giải quyết vấn đề
H: Nhận xét tính ổn định và
1- Nhận xét:
tính thay đổi của bài tốn
- Tính thay đổi trong bài tốn: Các giá trị
H: Thử xét các trường hợp
a,b,c,d,e
đặc biệt hơn và rút ra nhận
- Tính ổn định: Khoảng ( 0;1) và bất đẳng thức
xét?( Nếu học sinh chỉ xét
(1)
trường hợp a) thì giáo viên
2- Các tình huốn học sinh xét các trường hợp
gợi ý để học sinh xét tiếp
đặc biệt:
trường hợp b).
a) Lấy các giá trị của a, b, c, d, e ∈ ( 0;1) để kiểm
Nếu từ trường hợp 2 số học
sinh tìm ra được nhận xét
đúng thì khơng phải xét
trường hợp 3 số. Nếu từ
trường hợp 2 số học sinh
chưa tìm được kết quả gì thì
tra (1) và thấy đúng.
b) Lấy số các đối tượng a,b,c,d,e
+ Trường hợp 1 số thì (1) sai
+ Trường hợp 2 số:
a, b ∈ ( 0;1) ta có:
(1 − a )(1 − b) > 1 − a − b ⇔ 1 − a − b + ab > 1 − a − b
giáo viên gợi ý học sinh xét
⇔ ab > 0 , đúng do a, b > 0.
tiếp trường hợp 3 số
+ Trường hợp 3 số: a, b, c ∈ ( 0;1) ta có:
(1 − a )(1 − b)(1 − c) > 1 − a − b − c
Tình huống 1:
Dùng phép chứng minh tương tự để giải quyết
bài toán đã cho( tức là cho trường hợp 5 số
* Nếu học sinh giải quyết
theo tình huống 1, sau khi
chứng minh dạng bài toán,
giáo viên gợi ý tiếp để học
sinh mở rộng bài tốn, phù
hợp với tình huống 2
a,b,c,d,e ∈ ( 0;1) )
Tình huống 2:
Từ các trường hợp trên, kết hợp với dự đoán kết
quả bài toán và cho là đúng để khái qt hóa
thành bài tốn.
Bài tốn 2:
Cho a1 , a2 ,..., an ∈ ( 0;1) ; n ≥ 2 . Chứng minh:
(1 − a1 )(1 − a2 )...(1 − an ) > 1 − a1 − a2 − ... − an
Học sinh có thể có 2 hướng tìm lời giải:
Hướng 1: Áp dụng phương pháp ở các trường
hợp đặc biệt
- Nếu giải quyết được bài
tốn 2 thì bài tốn 1 ở trên
coi như đã được giải quyết.
- Nếu học sinh giải quyết
theo hướng 1 sẽ gặp khó
khăn về xác định dấu do chỉ
Hướng 2: Dùng phương pháp quy nạp toán học.
- Với n= 2, 3 bài toán 2 đúng
- Giả sử bài toán đúng cho trương hợp n số. Ta
chứng minh bài toán đúng cho trường hợp n + 1
số tức là:
Cho a1 , a2 ,..., an , an +1 ∈ ( 0;1) ; n ≥ 2 . Chứng minh:
số n thay đổi. Chính từ sự
(1 − a1 )(1 − a2 )...(1 − an +1 ) > 1 − a1 − a2 − ... − an +1
thay đổi này gợi ý dùng
Ta có: Từ giả thiết quy nạp bài tốn đúng cho n
phương pháp quy nạp toán
số nên:
học.
(1 − a1 )(1 − a2 )...(1 − an ) > 1 − a1 − a2 − ... − an
Do an +1 ∈ ( 0;1) nên ta có:
(1 − a1 )(1 − a2 )...(1 − an )(1 − an +1 ) > (1 − a1 − a2 − ... − an )(1 − an +1 )
Mặt khác:
(1 − a1 − a2 − ... − an )(1 − an+1 ) = (1 − a1 − a2 − an − an +1 ) +
(a1an +1 + a2 an +1 + an an +1 ) > (1 − a1 − a2 − ... − an − an +1 )
Do a1an +1 + an an +1 > 0
Như vậy nhờ phép đặc biệt
hóa, khái quát hóa, tương tự,
… chúng ta đã giải quyết
Vậy: (1 − a1 )(1 − a2 )...(1 − an +1 ) > (1 − a1 − a2 − ... − an +1 )
Bài toán 2 được chứng minh xong từ đó bài tốn
1 được giải quyết
xong bài tốn.
Thử đặc biệt hóa bài tốn 2 ở
nhiều cách nhìn khác nhau
( Có thể gợi ý tìm yếu tố cố
định và yếu tố thay đổi trong
bài toán 2)
HĐ3: Kiểm tra và nghiên cứu kết quả
Giáo viên gợi ý để học sinh
+ Trong bài toán 2:
kiểm tra và nghiên cứu kết
- Yếu tố cố định: Khoảng ( 0;1) và bất đẳng thức
quả.
- Yếu tố thay đổi:
H: Thử mở rộng bài toán 2
1. Các giá trị ai ∈ ( 0;1) ; i = 1; n
Giáo viên yêu cầu dùng
phương pháp tương tự giải
quyết một số bài toán khác
Bài toán 3: Cho
2.Chỉ số n ≥ 2
+ Các khả năng đặc biệt hóa bài tốn 2:
1. Đặc biệt hóa các giá trị ai ∈ ( 0;1)
1
2
a + b + c + d ≥ 4 .Chứng minh:
* a1 = a2 = ... = an =
a 4 + b 4 + c 4 + d 4 ≥ a3 + b3 + c3 + d 3
π
* Cho α i ∈ 0; ÷; i = 1; n ta có các kết quả
Bài tốn 4:
Tìm cơng thức biến đổi tổng
thành tích biểu thức sau:
Cos7A + cos 7B + cos 7C,
trong đó A, B, C là ba góc
của tam giác.
2
αi
α
n
a. ∏ 1 − tan ÷ > 1 − ∑ tan i ÷
2
2
i =1
i =1
n
n
b. ∏ ( 1 − cosα i ) > 1 − ∑ cosα i ÷.
i =1
i =1
n
2.Đặc biệt hóa chỉ số n, chẳng hạn n = 5, 6, …
3. Đặc biệt hóa cả chỉ số n và các ghía trị ai . Ví
dụ: Cho tam giác ABC ta có:
(1 − sin A)(1 − sin B)(1 − sin C ) > 1 − sin A − sin B − sin C .
Biến đổi kết quả này về dạng khác ta được:
A
B
C
A π
B π
C π
8cos 2 + ÷cos 2 + ÷cos 2 + ÷ ≥ 1 − 4 cos cos cos
2
2
2
2 4
2 4
2 4
Việc tổ chức các hoạt động trên lớp mơn Tốn tốt cũng góp phần tăng hứng thú
học tập bộ môn
Chương III: KẾT QUẢ THỰC NGHIỆM
Trong 2 năm học 2010-2011 và 2011-2012 đề tài trên được thực nghiệm trên các
lớp khối 10 và 11 trường THPT Yên Định 2, Thanh Hóa ở cả hai chương trình
cơ bản và nâng cao. Kết quả như sau:
1. Về ý thức thái độ học tập bộ môn: Học sinh từ chỗ học tập thụ động ở các
trường THCS đã dần có ý thức học tập mơn Tốn (các lớp ban cơ bản). Các lớp
ban KHTN sau 2 năm học sinh đã hồn tồn chủ động trong học tập, giờ học sơi
nổi, có nhiều em đã phát huy cao độ tư duy sáng tạo và có những kết quả cao.
2. Về kết quả nghiên cứu tổng hợp sau 2 năm ở trương THPT Yên Định 2
Năm học 2010- 2011 và năm học 2011-2012:
- Lớp 11B1, 11B3 cả 2 Năm học; lớp 10B5 năm học 2010-2011; lớp 11B7 năm
học 2011-2012
Kết quả trước thực nghiệm
Lớp
G
K
TB
Yếu
Số SL % SL % SL % SL %
11B147 10 21.3 12 25.5 20 42.5 5
10.7
11B348 1 2.0 12 25 25 52 10 21
10B545 0 0 3 6.7 10 22.2 32 71.1
11B740 1 2.5 4 10 12 30 23 57.5
Sĩ
Kết quả sau thực nghiệm
G
K
TB
Yếu
SL % SL % SL % SL %
25 53.2 15
32 6
12.7 1 2.1
10 21 20
42 13
26.6 5 10.4
2 4.4 12
26.7 20
44.4 11 24.5
4 10 10
25 14
35 12 30
C. KẾT LUẬN
-Trong q trình dạy học nói chung và bộ mơn Tốn nói riêng, việc thiết
kế bài dạy và tổ chức các HĐ trên lớp đóng vai trị quyết định chất lượng giảng
dạy bộ mơn Tốn trong c.ác nhà trường nói chung và trương THPT nói riêng.
- Để làm được tốt những yêu cầu trên đòi hỏi thầy giáo phải đầu tư thời
gian, trí tuệ vào cơng tác chuẩn bị bài dạy, suy nghĩ và linh hoạt trong các thao
tác lên lớp.
- Khơng có phương thức dạy học nào là “Vạn năng” cả. Để phát huy tính
tích cực, chủ động, sáng tạo trong học tập của học sinh thầy giáo phải biết tổ
chức hướng dẫn các thao tác tư duy: đạc biệt hóa, tương tự hóa, khái quát hóa,…
v…v…
Ở một số thao tác có thể phải mị mẫm, dự đốn, thử nghiệm để “Quy lạ về
quen”. Mục tiêu là tiếp thu kiến thức bộ môn hiệu quả nhất
- Sau mỗi tiết dạy cần phải kiểm tra lại tính đúng đắn và hiệu quả của việc
truyền thụ. Tránh nhàm chán trong việc truyền thụ, phụ thuộc sách giáo khoa
hoặc tài liệu hướng dẫn, các ví dụ có sẵn.
Tóm lại tơi xin nêu một số vấn đề tưởng chừng quen thuộc với tất cả mọi
thầy cô giáo khi lên lớp, đã được đề cập thường xuyên ở tất cả mọi khía cạnh
nhưng vẫn là chưa đủ để có kết quả giảng dạy tốt ở tất cả các mơn học nói chung
và mơn Tốn nói riêng.
Cuối cùng tơi mong nhận được những trao đổi của các thầy cô giáo đang
trực tiếp giảng dạy cũng như các nhà nghiên cứu lý luận dạy học, quản lý giáo
dục quan tâm đến cơng tác giảng dạy nói chung và bộ mơn Tốn nói riêng.
n Định mùa xn 2012
Người viết
Lê Khắc Khuyến