Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.91 KB, 7 trang )
SỰ TỒN TẠI CỦA PHÉP QUAY VÀ ỨNG DỤNG:
1. Mở rộng sự tồn tại của phép quay:
V/Đ: Cho hai điểm A,B phân biệt. Liệu có tồn tại phép quay nào biến A thành B
hay không? Phép quay đó có duy nhất hay không?
Mệnh đề 1. Cho hai đoạn thẳng AB và A’B’ sao cho AB = A’B’. Khi đó, tồn tại duy nhất
một phép quay R biết AB thành A’B’ tương ứng.
Tâm quay O thuộc những đường nào?
Mệnh đề 2. (Mệnh đề 1 bổ sung) Phép quay R duy nhất biến AB thành A’B’ như trên,
có góc quay là
( )
, ' 'AB A B
α
=
uuur uuuuur
và tâm O nằm trên các trung trực của AA’, BB’ đồng thời
nằm trên cung tròn chứa các điểm nhìn đoạn AA’, BB’ dưới một góc có hướng bằng
α
Trung trực AA’, BB’
O
∈
Cung tròn những điểm nhìn đoạn AA’, BB’ dưới góc
·
( )
, ' 'AB A B
α
=
V/đ: Cho hai đoạn thẳng AB, A’B’ song song nhau. Có tồn tại phép biến hình nào
biến AB thành A’B’ hay không?
Mệnh đề 3. Ta giữ các giả thiết như mệnh đề 1 và mệnh đề 2.
(1) giả sử các đường thẳng AB và A’B’ cắt nhau tại P, khi đó các tứ giác APOA’,