2 3 3 2 2
: 1 (víi 0, 9)
9
3 3 3
x x x x
x x
x
x x x
+ −
+ − − ≥ ≠
÷ ÷
÷ ÷
−
+ − −
!
x
"
−
!
#$
=y x
%&'
% y m x m
= + − +
%(
)*"+,#$%&
-%(././0%&1"234
"
5642789!:
;
y
x
y
y
x
y
− =
+
+ =
+
#
2789!:
x mx
+ + =
%<!
m
"=
% % x x x x
− + −
"1
9,->?!9,->"@%
? x x
.4234A%
"
B"7C9D3E"7CFGHI9JB"7C9D.>"%H-8
H?K(LM2M'N"7C9D3E0H1O<PQR'/@'N
H%R
∈
H?FQHP'/@'NO%P
∈
OIR0HP1S<
:H.23A@OS
:HPTHOUS
:HR<OR<HO
$
9V:
< < a b
b a
+ + + >
÷ ÷
?'N
? a b
>
WWWWWWWWWWWWRXWWWWWWWWWWWW
R JG#:YYYYYYYYYYYYYYY<Z$(:YYYYYY
%&'()
3:)N
? [x x
≥ ≠
@:
+ − − + + − − − − +
+ − − =
÷ ÷
÷ ÷
−
+ − − + − −
2 3 3 2 2 2 ( 3) ( 3) 3 3 2 2 3
A= : 1 :
9
3 3 3 ( 3)( 3) 3
x x x x x x x x x x x
x
x x x x x x
\ %
:
% % % % % %
x x x x x x x x x
x x x x x x x x x
− + + − − + − − − − + −
= = × = =
+ − − + − + + + +
!
x
"
−
−
[ \ \
x x x
x
− −
⇔ = ⇔ + = ⇔ = ⇔ =
+
%-]
? [x x
≥ ≠
<
)^
−
F
\x
=
<
!*+ ,-./0 *
=y x
@69,:
x
W W W
y
[ [
&789!"_"A%&'%(:
% % %x m x m x m x m= + − + ⇔ − + + − =
I
% m
− +
I
m
−
@:
[ ]
% <<% \ [ m m m m m
∆ = − + − − = + + − +
+ + > ∀
2
( 1) 20 0 víi m m
⇒
&789!%@4234
⇒
%(././0%&1"234
3:
− =
+
+ =
+
2
2
2
2
10
5 1
1
(I)
20
3 11
1
y
x
y
y
x
y
`a
=
2
x u
%
≥
0u
'
=
+
2
10
1
y
v
y
R4%b9c:
− = − = = =
⇔ ⇔ ⇔
+ = + = − = =
5 1 10 2 2 13 13 1
3 2 11 3 2 11 5 1 4
u v u v u u
u v u v u v v
)N
= = =
2
1 1 1u x x
)N
=
= = + =
+
=
2
2
2
10
4 4 4 10 4 0
1
1
2
y
y
v y y
y
y
B.1>4%b"'N
= = =
1
1; 2 hoặc
2
x y y
<)^4%b@4%II%I
1
2
I%WII%WI
1
2
#*/1234.563/*
+ + =
2
2 1 0 (1)x mx
+78*
=
' 2
1m
`2789!@4234
1 2
, x x
!
<
> >
>
2
1
' 0 1 0
1
m
m
m
d)d@:
+ =
=
1 2
1 2
2
(I)
1
x x m
x x
d"e@:=
+ = +
2 2 2 2 4 2 4 2
1 1 2 2 1 1 2 2
( 2012) ( 2012) 2012 2012x x x x x x x x
= + + = + +
2
2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
( ) 2 2012( ) ( ) 2 2( ) 2012 ( ) 2x x x x x x x x x x x x x x x x
4%b'=@:
=
2 2 2
(4 2) 2012(4 2) 2m m
+
2 2 2 2 2
(4 2) 2.(4 2).1006 1006 1006 2m m
+ +
2
2 2 2
(4 2) 1006 (1006 2) -(1006 2)m
="19,->F
= = =
2 2 2
4 2 1006 0 4 1008 252m m m
=
=
6 7
6 7
m
m
-"eF42789!@4
P"@=W%\
T
*
+ Chng minh CB l phõn gic ca gc DCE
@:
ã ã
ằ
DCB CAB (cùng chắn BC)=
ã
ã
BCE CAB (góc có cạnh t ơng ứng vuông góc)=
O"@H.23A@OS
b) Chng minh BK + BD < EC
=fgOS@:
EK CD (BK CD)
B là trực tâm của CDE
DH CE (CH AB)
CB DE tại F
H."7CAgOS<hH.23A@OSJgOS
31
ã ã
CED CDE =
haF:
ả
à
1 1
D E (góc có cạnh t ơng ứng vuông góc)=
O"@gHOS31H
BD = BE
HOTHPHSTHPSP
9PS'/1P@:SPUS%1e.N>
HPTHOUS
c) Chng minh BH . AD = AH . BD
=fH@:
ã
0
ACB 90 (góc nội tiếp chắn nửa đ ờng tròn)=
2
BH . BA = BC
%4'e1'"7C9'/
.1@:
BH BC
BHC BFD (g-g) BH . BD = BC . BF
BF BD
= ~
ã
ã
DCB BCE =
ã
ả
2 2
D E =
BH.(BA+BD) = BC.(BC + BF) BH . AD = BC . CF (1)⇒ ⇔
haF@:iiOS%j'/@'Nk
¶
·
·
·
2
0
D CAB (so le trong)
AH AC
ACH
DF BD
mµ AHC DFB 90
⇒ =
⇒ ∆ ∆ ⇒ =
= =
~ DBF (g- g)
AH . BD = DF . AC (2)⇒
haF:
AC CF
ABC CDF (g -g) BC . CF = DF . AC (3)
BC DF
∆ ∆ ⇒ = ⇒ ~
l%I%'%#9:HR<OR<HO
$*9@:
+ + + = + + +
÷ ÷
1 1 21 3
21. 3. 21 3a b a b
b a b a
)N
>
, 0a b
<m2(n>"o/#?"7p:
+ ≥ × =
3 3
21 2 21 6 7a a
a a
%
+ ≥ × =
21 21
3 2 3 6 7b b
b b
%
_l'MA%'%"7p:
× + + × + ≥
÷ ÷
1 1
21 3 12 7a b
a b
h:
= =
12 7 144.7 1008
I
= =
2
31 31 961
⇒ >
12 7 31
⇒
× + + × +
÷ ÷
1 1
21 3 > 31a b
a b
%"2