HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
CHỦ ĐỀ THỜI GIAN VÀ QUÃNG ĐƢỜNG TRONG
DAO ĐỘNG ĐIỀU HÕA
( Tài liệu sƣu tầm )
GIÁO VIÊN : NGUYỄN MINH DƢƠNG (096.214.6445)
HÃY THAM GIA NHÓM VẬT LÝ ANH DƢƠNG TRÊN FACEBOOK ĐỂ TRAO ĐỔI VÀ THẢO
LUẬN VỀ BÀI HỌC VÀ CÁC THÔNG TIN VỀ KHÓA LTĐH MIỄN PHÍ (2016)
I.CHUYỂN ĐỘNG TRÕN ĐỀU VÀ DAO ĐỘNG ĐIỀU HÒA
1. Mối liên hệ giữa dao động điều hòa và hình chiếu của
chuyển động tròn đều:
Xét một điểm M chuyển động tròn đều trên đường tròn có bán kính A
và tốc độ góc ω. Tại thời điểm ban đầu chất điểm ở vị trí điểm M0
và tạo với trục ngang một góc φ. Tại thời điểm t chất điểm ở vị trí M
và góc tạo với trục ngang 0x là (ωt + φ). Khi đó hình chiếu của điểm M
x
xuống ox là OP có độ dài đại số . x = OP = Acos(t + ) (hình 1)
Hình chiếu của một chất điểm chuyển động tròn đều là một dao động điều hòa.
Hay x = Acos(ωt + φ)cm ; (t đo bằng s) , được biểu diễn bằng
véctơ quay trên Vòng tròn Lượng Giác như sau:
-Vẽ một vòng tròn có bán kính bằng biên độ:R = A
-Trục Ox nằm ngang làm gốc.
-Xác định pha ban đầu trên vòng tròn (vị trí xuất phát).
-A
Quy ƣớc : Chiều dương từ trái sang phải.
- Chiều quay là chiều ngƣợc chiều kim đồng hồ.
- Khi vật chuyển động ở trên trục Ox : theo chiều âm.
- Khi vật chuyển động ở dƣới trục Ox : theo chiều dƣơng.
- Có bốn vị trí đặc biệt trên vòng tròn:
I : vị trí biên dương xmax = +A φ = 0 ; (đây là vị trí mốc lấy góc φ)
II : vị trí cân bằng theo chiều âm φ = + π/2 hoặc φ = – 3π/2
III : vị trí biên âm xmax = - A
φ = ±π
IV : vị trí cân bằng theo chiều dương φ = – π/2 hoặc φ = +3π/2
II
Hình 1
O VTCB
+A
II
M1
III
O
a
A/2
A/
2
I
x
o O 30A/
III
30
Hình 2 IV M0
2
a
30
M1
IM0
3 Ix
A
2
Hình 3 IV
- Chiều dài quỹ đạo của dao động điều hòa: l= 2A.
2.Quãng đƣờng đi đƣợc trong khoảng thời gian (t2 – t1) của chất điểm dao động điều hoà:
- Quãng đường vật đi được trong 1 chu kỳ dao động( t2 – t1 =T) là:
S = 4A.
- Quãng đường vật đi được trong 1/2 chu kỳ dao động ( t2 – t1 =T/2) là: S = 2A.
a.Khi vật xuất phát từ vị trí đặc biệt: Ta chỉ xét khoảng thời gian( t2 – t1 =t < T/2).
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
1
+
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
Vật xuất phát từ VTCB:(x=0)
+ khi vật đi từ: x = 0 x
A
2
thì t
T
: Quãng đường đi được là: S = A/2
12
( hình 2)
T
A 2
A 2
thì t : Quãng đường đi được là: S =
8
2
2
T
A 3
A 3
+ khi vật đi từ: x=0 x
thì t : Quãng đường đi được là: S =
6
2
2
T
+ khi vật đi từ: x=0 x A
thì t : Quãng đường đi được là: S = A
4
Vật xuất phát từ vị trí biên:( x A )
T
A 3
A 3
+ khi vật đi từ: x= A x
thì t
: Quãng đường đi được là : S = A ( hình 3)
12
2
2
T
A 2
A 2
+ khi vật đi từ: x= A x
thì t : Quãng đường đi được là : S = A8
2
2
A
T
+ khi vật đi từ: x = A x thì t : Quãng đường đi được là : S = A/2
2
6
T
+ khi vật đi từ: x= A x= 0 thì t :
Quãng đường đi được là : S = A
4
+ khi vật đi từ: x=0 x
]
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
2
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
v<0
sin
π
2
2π
3
π
3
3π
4
A 3 2
π
4
π
6
A 2 2
5π
6
A
W®=3Wt
v v max 3 2
A 3
2 2
-A
Wt=3W®
+
-A
2
W®=3Wt
1
2
v v max 3 2
0
A
1
-A
2
1
2
3
A A
2
2
2
cos
0
A
x
Wt=3W®
v v max / 2
W®=Wt
v v max 2 2
5π
6
-A
3π
4
1
2
-A 2 2
π
3
-A 3 2
2π
3
π
2
v v max / 2
π
6
π
4
W®=Wt
v v max 2 / 2
V>0
Hình 5
Vòng tròn lƣợng giác
b. Khi vật xuất phát từ vị trí bất kỳ! Quãng đƣờng vật đi đƣợc từ thời điểm t1 đến t2.
PPG: Phân tích: t2 – t1 = nT + t
(n N; 0 ≤ t < T)
+ Quãng đường đi được trong thời gian nT là S1 = 4nA, trong thời gian t là S2.
+ Quãng đường tổng cộng là: S
= S1 + S2 . Tính S2 như
sau:( Nếu t T S2 2A )
2
x1 Acos(t1 )
x Acos(t2 )
và 2
(v1 và v2 chỉ cần xác định dấu)
v1 Asin(t1 ) v2 A sin(t2 )
Xác định:
t 0,5.T S2 x2 x1
* Nếu v1v2 ≥ 0
t 0,5.T S2 4 A x2 x1
v1 0 S2 2 A x1 x2
v1 0 S2 2 A x1 x2
* Nếu v1v2 < 0
Lƣu ý:+ Nếu t2 – t1 = nT/2 với n là một số tự nhiên thì quãng đường đi được là S = n.2A.
+ Tính S2 bằng cách xác định vị trí x1, x2 và chiều chuyển động của vật trên trục Ox
+ Dùng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều có thể giải bài toán đơn giản hơn.
Mô tả tính S2: Dựa vào hình chiếu của chuyển động tròn đều.Tính x1 = Acos(t1+ ); x2 = Acos(t2+).
Xác định vị trí điểm M trên đường tròn ở thời điểm t1 và t2.Tìm S2 như các hình 5 sau đây: (t = t2 – t1 )
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
3
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
1
2
2
1
1 2
1
1
S2 = x1 – x2
S2 = x1 –2 x2
1
1
2
2
S2 = x2 – x1
2
1
2
2
1
2
S2 = x1 + 4A – x2
1
S2 = x2 – x1
S2 = x1 + 4A – x2
S2 = -x1 + 4A + x2
1
2
2
2
1
1
1
S2 = 2A -x1 - x2
2
1
2
S2 = -x1 + 4A + x2
S2 = x1 + 2A + x2
1
2
2
1
1
1
1
2
S2 = + 2A - x1 - x2
2
2
S2 = x1 + 2A + x2
S2 = x1 + 2A + x2
Hình 6: (Chú thích: Các Hình vẽ này copy từ trên mạng)
Nhận xét: Khi vật xuất phát từ VTCB hoặc vị trí biên (tức là = 0; ; /2) thì
+Quãng đường đi được từ thời điểm t1= 0 đến thời điểm t2 = T/4 là : S=A
+Quãng đường đi được từ thời điểm t1= 0 đến thời điểm t2 = nT/4 là: S= nA
+Quãng đường đi được từ t1 = 0 đến t2 = nT/4 + t (với 0 < t < T/4) là: S = nA +x(nT/4 + t) - x(nT/4)
3. Khoảng thời gian ngắn nhất để vật đi từ vị trí có li độ x1 đến x2:
x
co s 1 1
A
t
2 1 với
và ( 0 1 ,2 ) (Hình 7)
-A
co s x2
2
A
4. Quãng đƣờng lớn nhất, nhỏ nhất đi đƣợc trong t2 – t1 =t (0 < t < T/2).
-Vật có vận tốc lớn nhất khi qua VTCB.Vật có vận tốc nhỏ nhất khi qua vị trí biên.
Trong cùng một khoảng thời gian:
+Quãng đường đi được càng lớn khi vật ở càng gần VTCB
+Quãng đường đi được càng nhỏ khi vật càng gần vị trí biên.
M1
M2
x2
x1
O
A
Hình 7
M'2
M'1
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
4
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
-Mối liên hệ giữa dao động điều hoà và chuyển đường tròn đều:
Góc quét: = t.
-Quãng đường lớn nhất khi vật đi từ M1 đến M2 đối xứng qua trục sin (hình 8):
=> Trong DĐĐH ta có: S Max 2A sin
2
M2
M1
P
2
A
-A
P2
P
O
x
1
-Quãng đường nhỏ nhất khi vật đi từ M1 đến M2 đối xứng qua trục cos (hình 9)
=> Trong DĐĐH ta có: SMin 2 A(1 cos
Lƣu ý: +Nếu t > T/2 -> Tách t n
+Trong thời gian n
)
2
Hình 8
T
T
t ' ( n N * ;0 t ' )
2
2
T
quãng đường luôn là 2nA
2
M2
+Trong thời gian t’ thì quãng đường lớn nhất, nhỏ nhất tính như trên.
5.Tốc độ trung bình của vật đi từ thời điểm t1 đến t2:
S
+ vtb
với S là quãng đường tính như trên.
t2 t1
-A
O
2
x
M1
+Tốc độ trung bình lớn nhất và nhỏ nhất của vật trong khoảng thời gian t:
vtbMax
A
P
S Max
S
và vtbMin Min với SMax; SMin tính như trên.
t
t
Hình 9
II.CÁC DẠNG BÀI TẬP:
Dạng 1 : Xác định quãng đƣờng vật đi đƣợc từ thời điểm t1 đến thời điểm t2
1.Phƣơng pháp 1:Xác định quãng đƣờng vật đi đƣợc từ thời điểm t1 đến t2 :t2 – t1 = nT + t
x Acos(t1 )
x 2 Acos(t 2 )
Bước 1: Xác định : 1
(v1 và v2 chỉ cần xác định dấu)
và
v1 Asin(t1 ) v 2 Asin(t 2 )
Bước 2: Phân tích :
t2 – t1 = nT + t
(n N; 0 ≤ t < T) . (Nếu t T S2 2A )
2
Quãng đường đi được trong thời gian nT là: S1 = 4nA, trong thời gian t là S2.
Quãng đường tổng cộng là S = S1 + S2 :
Cách tính S2: (Xem hình 6)
* Nếu v1v2 ≥ 0
t
t
T
S2 x 2 x1
2
T
S2 4A x 2 x1
2
v 0 S 2A x x
2
1
2
* Nếu v1v2 < 0 1
v1 0 S2 2A x1 x 2
Lƣu ý: + Tính S2 bằng cách định vị trí x1, x2 và chiều chuyển động của vật trên trục Ox
+ Có thể dùng mối liên hệ giữa dao động điều hòa và Chuyển động tròn đều giải bài toán sẽ đơn giản hơn.
+ Trong nhiều bài tập có thể ngƣời ta dùng kí hiệu: t = t2 – t1 = nT + t’
2.Phƣơng pháp 2: Xác định Quãng đƣờng vật đi đƣợc từ thời điểm t1 đến t2: t2 – t1 = nT + T/2 + t0
Bước 1: - Xác định vị trí và chiều chuyển động của vật tại thời điểm t1 và t2:
(v1 và v2 chỉ cần xác định dấu)
Bước 2: - Phân tích: Δt = t2 – t1 = nT + T/2 + t0
(n ЄN; 0 ≤ t0 < T/2)
-Quãng đường đi được trong khoảng thời gian Δt là: S = S1 + S2
-Quãng đường S1 là quãng đường đi được trong thời gian: nT + T/2 là: S1 = n.4A+ 2A
-Quãng đường S2 là quãng đường đi được trong thời gian t0 (0 ≤ t0 < T/2)
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
5
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
'
+ Xác định li độ x1 và dấu của vận tốc v1 tại thời điểm: t1 + nT + T/2
+ Xác định li độ x2 và dấu của vận tốc v2 tại thời điểm t2
'
'
'
+ Nếu v1' v2 0 ( v1 và v2 cùng dấu – vật không đổi chiều chuyển động) thì : S2 = |x2 - x1 |
'
+ Nếu v1' v2 0 ( v1 và v2 trái dấu – vật đổi chiều chuyển động) thì :
v1' > 0, v2 < 0 : S2 = 2A - x1' - x2
'
'
v1 < 0, v2 > 0 : S2 = 2A + x1 + x2
3.Các Ví dụ:
Ví dụ 1: Một vật dao động điều hòa với phương trình x 2cos(10 t
3
)(cm) . Tính quãng đường vật đi được trong
thời gian 1,1s đầu tiên.
Giải 1: Quãng đường vật đi được trong 1,1s đầu tiên tính từ lúc vật bắt đầu chuyển động. Ta thay t = 0 vào phương
trình li độ và phương trình vận tốc để xem vật bắt đầu đi từ vị trí nào và theo chiều nào.?
Ta có : x 2cos(10 t
Tại t = 0 :
)(cm) => v 20 sin(10 t )(cm / s)
3
3
x0 2 cos( )
3
v0 20 sin( )
3
x0 1cm
v0 0
và có chu kỳ : T
=>
2
2
0, 2( s)
10
Vậy vật bắt đầu đi từ vị trí x0 = 1cm theo chiều dương.
Phân tích: t 1,1s nT t ' 5.0, 2
0, 2
T
5.T . -> Quãng đườngđi được trong thời gian: nT + T/2 là:
2
2
S1 = n.4A+ 2A => Quãng đường vật đi được là S = 5.4A+ 2A = 22A = 44cm.
Ví dụ 2: Một vật dao động điều hòa với phương trình x 4cos( t
2,25s đầu tiên.
Giải cách 1: Ta có : T
2
2
2
)(cm) . Tính quãng đường vật đi được trong
2( s) ; t = 2,25s = T + 0,25(s)
Quãng đường vật đi được trong 2s đầu tiên là S1 = 4A = 16cm.
x0 4 cos(2. )
x0 0
2
- Tại thời điểm t = 2s :
=>
v0 0
v0 4 sin(2. )
2
x 4 cos(2, 25. )
x 2 2cm
2
- Tại thời điểm t = 2,25s :
=>
v 0
v 4 sin(2, 25. )
2
Từ đó ta thấy trong 0,25s cuối vật không đổi chiều chuyển động nên quãng đường vật đi được trong 0,25s cuối là
S2 2 2 0 2 2(cm) .Vậy quãng đường vật đi được trong 2,25s là: S = S1 +S2 (16 2 2)(cm)
Giải cách 2: (Sử dụng mối liên hệ giữa dao động điều hòa và chuyển động tròn đều).
Tương tự như trên ta phân tích được Δt = 2,25s = T + 0,25(s).
Trong một chu kỳ T vật đi được quãng đường S1 = 4A = 16cm
Xét quãng đường vật đi được trong 0,25s cuối. Trong 0,25s cuối thì góc mà vật quét được trên đường tròn (bán kính
A = 4cm) là: .t .0, 25
2
rad =>Độ dài hình chiếu là quãng đường đi được: S2 A cos 4
2 2(cm)
4
2
Từ đó ta tìm được quãng đường mà vật đi được là:
S = S1 +S2 (16 2 2)(cm)
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
6
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
Ví dụ 3: Một con lắc lò xo dao động điều hòa với phương trình: x = 12cos(50t - π/2)cm. Quãng đường vật đi được
trong khoảng thời gian t π/12(s), kể từ thời điểm gốc là (t = 0):
A. 6cm.
B. 90cm.
C. 102cm.
D. 54cm.
2 2
Giải Cách 1: Chu kì dao động : T = =
= s
50 25
x 0 0
Vật bắt đầu dao động từ VTCB theo chiều dương
v0 0
tại t = 0 :
x 6cm
tại thời điểm t = π/12(s) :
Vật đi qua vị trí có x = 6cm theo chiều dương.
v 0
t t0
1
T
t .25
Số chu kì dao động : N =
= =
= 2 + Thời gian vật dao động là: t = 2T + = 2T +
s.
12
12
300
T
T 12.
Quãng đường tổng cộng vật đi được là : St = SnT + SΔt Với : S2T = 4A.2 = 4.12.2 = 96m.
v1v 2 0
Vì
SΔt = x x 0 = 6 0 = 6cm
T
t < 2
Vậy : St = SnT + SΔt = 96 + 6 = 102cm.
Chọn : C.
Giải Cách 2: Ứng dụng mối liên hệ giữa CĐTĐ và DĐĐH
B
x0
x
B
x
O
B
x 0
tại t = 0 : 0
Vật bắt đầu dao động từ VTCB theo chiều dương
v0 0
x0
x
B x
O
t t0
1
t .25
6
Số chu kì dao động : N =
=
=2+
12
T
T 12.
Hình 10
T
2 2
t = 2T +
= 2T +
s. Với : T =
= = s
12
300
50 25
T
Góc quay được trong khoảng thời gian t : α = t = (2T + ) = 2π.2 +
(hình 10)
12
6
Vậy vật quay được 2 vòng +góc π/6 quãng đường vật đi được là : St = 4A.2 + A/2 = 102cm.
Ví dụ 4: Một vật dao động điều hoà với phương trình x = 6cos (2πt – π/3)cm. Tính độ dài quãng đường mà vật đi
được trong khoảng thời gian t1 = 1,5 s đến t2 =13/3 s
A. (50 + 5 3 )cm
B.53cm
C.46cm
Phƣơng pháp GIẢI BÀI NÀY :
* Quãng đƣờng vật đi đƣợc từ thời điểm t1 đến t2.
- Xác định vị trí và chiều chuyển động của vật tại thời điểm t1 và t2:
D. 66cm
(v1 và v2 chỉ cần xác định dấu)
- Phân tích: Δt = t2 – t1 = nT + T/2 + t0
(n ЄN; 0 ≤ t0 < T/2)
-Quãng đường đi được trong khoảng thời gian Δt là: S = S1 + S2
- Quãng đường S1 là quãng đường đi được trong thời gian: nT + T/2
S1 = n.4A+ 2A
- Quãng đường S2 là quãng đường đi được trong thời gian t0 (0 ≤ t0 < T/2)
'
+ Xác định li độ x1 và dấu của vận tốc v1 tại thời điểm: t1 + nT + T/2
+ Xác định li độ x2 và dấu của vận tốc v2 tại thời điểm t2
'
'
+ Nếu v1' v2 0 ( v1 và v2 cùng dấu – vật không đổi chiều chuyển động) thì : S2 = |x2 - x1 |
'
'
+ Nếu v1' v2 0 ( v1 và v2 trái dấu – vật đổi chiều chuyển động) thì :
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
7
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
v1'
v1'
'
> 0, v2 < 0 : S2 = 2A - x1 - x2
'
< 0, v2 > 0 : S2 = 2A + x1 + x2
Hƣớng dẫn giải : T= 1s
- Phân tích: Δt = t2 – t1 =13/3s -1,5s = 8.5/3 s = 2T + T/2 + 1/3 s
Quãng đường đi được trong khoảng thời gian Δt là: S = S1 + S2
- Quãng đường S1 : S1 = 2.4A +2A = 60cm
- Quãng đường S2 là quãng đường đi được trong thời gian t0 = 1/3 s
'
+ Xác định li độ x1 và dấu của vận tốc
v1'
tại thời điểm: t1 + 2T +T/2 = 4s
'
x1 3
Tại t = 4s '
v1 0
+ Xác định li độ x2 và dấu của vận tốc v2 tại thời điểm t2 =13/3s
Tại t2 = 13/3s:
x2 3
v2 0
'
Vì v1' v2 0 ( v1 và v2 trái dấu – vật đổi chiều chuyển động) thì :
'
và v1 > 0, v2 < 0 : S2 = 2A - x1 - x2 =2.6 -3-3=6cm
-Vậy Quãng đường đi được trong khoảng thời gian 8,5/3s: S = S1+ S2= 60+6=66(cm)
'
Ví dụ 5: Một vật dao động điều hòa trên quỹ đạo dài 20cm. Sau 1/12s kể từ thời điểm ban đầu vật đi được
10cm mà chưa đổi chiều chuyển động vật đến vị trí có li độ 5cm theo chiều dương. Phương trình dao động
của vật là:
Giải: Biên dộ A = 10cm. Như bài 4 ở trên ta suy ra:
Vật đi từ -A/2 đến A/ 2 ( hình vẽ 9B)
Ứng với thời gian vật từ N đến M với góc quay = /3
A
-A
-A/2
A/2
Hay thời gian đi là T/6 = 1/12 Suy ra T=1/2( s ) , f= 2Hz
X2
x1
O
X
Suy ra =2f =4 ( rad/s). Vật theo chiều dương nên:
góc pha ban đầu dễ thấy là = - (NO3 + 3Ox) = - (/6 +/2)= -2/3
N
Vậy phương trình dao động: x = 10 cos(4t -2/3) (cm)
M
3
Hình 11
Ví dụ 5: Một vật dao động điều hòa với phương trình x 4 2 cos(5t 3 / 4)cm. Quãng đường vật đi được từ
thời điểm t1 = 1/10(s) đến t2 = 6(s) là:
A. 84,4cm
B. 333,8cm
C. 331,4 cm
D. 337,5cm
Giải cách 1: chu kỳ: T
2
2
0, 4s
5
Thời gian đi: t2 -t1 = 6- 1/10= 5,9(s)
Ta có:
t2 t1 5,9
14, 75 Hay : t2 t1 14,75T 14T 0,75T
T
0, 4
Quãng đường đi trong 14T là : S1 =14.4A =56.4 2 =224 2 cm
Quãng đường đi trong 0,75T là : S2 =3A =3.4 2 =12 2 cm
(vì pha ban đầu là -3/4 nên vậy xuất phát từ vị trí cân bằng theo chiều âm)
Quãng đường đi trong 14T+ 0,75T là : S =S1 +S2 =236 2 cm
Vậy: S =S1 +S2 =236 2 =333,7544cm 333,8cm . chọn B
Giải cách 2: Dùng tích phân: Máy tinh Fx570ES….( File kèm sau nhé)
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
8
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
4.Tìm quãng đƣờng đi đƣợc của vật dao động điều hòa.( Tham khảo)
a.Vấn đề: Chất điểm dao động điều hòa dọc theo trục Ox với li độ có dạng x = Acos(t + ). Tìm quãng đường mà
vật đi được từ thời điểm t = t1 đến thời điểm t = t2.
b.Kiến thức:
-Bất kể vật xuất phát từ đâu, quãng đường vật đi sau nửa chu kì luôn luôn là 2A
-Nếu vật xuất phát từ vị trí cân bằng (x(t1) = 0) hoặc từ vị trí biên (x(t1) = A) thì quãng đường vật đi sau T/4 là A.
Trong khoảng thời gian t (với 0 < t < 0,5T), quãng đi được tối đa Smax và tối thiểu Smin?
Độ lệch cực đại: S = (Smax - Smin)/2 0,4A?
c.Phƣơng pháp giải quyết Vấn đề:
-Quãng đường đi được ‘trung bình’: S
t2 t1
.2 A . Quãng đường đi được thỏa mãn: S 0, 4 A S S 0, 4 A .
0,5T
So nguyen
t2 t1
S q.2 A
-Căn cứ vào:
q So ban nguyen va xt1 0 A
0,5T
q.2 A 0, 4 A S q.2 A 0, 4 A
d Tập hợp, cấu trúc kiến thức: Vận dụng giải các bài toán :
Các ví dụ hƣớng dẫn.
Câu 1: Một vật dao động điều hoà theo phương trình x = 1,25cos(2t - /12) (cm) (t đo bằng giây). Quãng đường vật
đi được sau thời gian t = 2,5 s kể từ lúc bắt đầu dao động là
A. 7,9 cm.
B. 22,5 cm.
C. 7,5 cm.
D. 12,5 cm.
2
T 1( s )
HD :
So nguyen
q t2 t1 2,5 5
S q.2 A 10 A 12,5( cm )
0,5T 0,5.1
Câu 2: Một vật nhỏ dao động điều hòa dọc theo trục 0x (0 là vị trí cân bằng) có phương trình dao động x = 3.cos(3t)
(cm) (t tính bằng giây) thì đường mà vật đi được từ thời điểm ban đầu đến thời điểm 3 s là
A. 24 cm.
B. 54 cm.
C. 36 cm.
D. 12 cm.
2 2
T
( s)
3
HD :
So nguyen
q t2 t1 3 0 9
S q.2 A 18 A 54cm
0,5
T
0,5.2
/
3
Câu 3: Một chất điểm dao động điều hòa trên trục Ox có phương trình x = 4cos(4t - /2) (cm). Trong 1,125 s đầu
tiên vật đã đi được một quãng đường là:
A. 32 cm.
B. 36 cm.
C. 48 cm.
D. 24 cm.
2
T 0,5( s)
HD :
t t 1,125 0
S ó ban nguyen
q 2 1
4,5
S q.2 A 9 A 36cm
nh
ng
x
0,5
T
0,5.0,5
t1 4cos 4 .0 2 =0
Câu 4: Một con lắc lò xo dao động với phương trình: x = 4cos4t cm (t đo bằng giây). Quãng đường vật đi được
trong thời gian 2,875 (s) kể từ lúc t = 0 là:
A. 16 cm.
B. 32 cm.
C. 64 cm.
D. 92 cm.
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
9
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
2
T 0,5( s)
HD :
Sè b¸n nguyªn
q t2 t1 2,875 0 11,5
S q.2 A 23 A 92cm
nhng x t 4cos4 .0 =0
1
0,5T
0,5.0,5
Câu 5: Một vật dao động điều hoà dọc theo trục Ox (O là vị trí cân bằng) có phương trình: x = 5.sin(2t + /6) cm (t
đo bằng giây). Xác định quãng đường vật đi được từ thời điểm t = 1 (s) đến thời điểm t = 13/6 (s).
A. 32,5 cm
B. 5 cm
C. 22,5 cm
D. 17,5 cm
2
T 1( s)
HD :
70
S q.2 A
23,3cm
q t2 t1 13 / 6 1 7
Chän C
3
0,5T
0,5.1
3
Amax 0, 4 A 2cm
Câu 6: Một vật dao động điều hoà dọc theo trục Ox với phương trình: x = 6cos(4t - /3) cm (t đo bằng giây). Quãng
đường vật đi được từ thời điểm ban đầu đến thời điểm t = 8/3 (s) là
A. 134,5 cm.
B. 126 cm.
C. 69 cm.
D. 21 cm.
2
T 0,5( s)
t t
8/ 30
64
64
HD :
S 2 1 .2 A
.4 A
A 6 128cm
0,5T
0,5
3
3
Chän B
Amax 0, 4 A 2, 4cm
5.Trắc nghiệm vận dụng :
Câu 1. Một vật nhỏ dao động điều hòa có biên độ A, chu kì dao động T, ở thời điểm ban đầu t = 0 vật đang ở vị trí
cân bằng hoặc vị trí biên. Quãng đường mà vật đi được từ thời điểm ban đầu đến thời điểm t = T/4 là
A. A/2
B. 2A
C. A
D. A/4
Câu 2. Một con lắc lò xo dao động điều hòa với phương trình : x 6cos(20t π/3)cm. Quãng đường vật đi được
trong khoảng thời gian t 13π/60(s), kể từ khi bắt đầu dao động là :
A. 6cm.
B 90cm.
C102cm.
D. 54cm.
Câu 3. Một vật dao động điều hoà dọc theo trục 0x với phương trình x = 6.cos(20t - /3) cm (t đo bằng giây). Quãng
đường vật đi được từ thời điểm t = 0 đến thời điểm t = 0,7π/6 (s) là
A. 9cm
B. 15cm
C. 6cm
D. 27cm
Câu 4. Một con lắc lò xo gồm một lò xo có độ cứng 40 N/m và vật có khối lượng 100 g, dao động điều hoà với biên
độ 5 cm. Chọn gốc thời gian t = 0 lúc vật qua vị trí cân bằng. Quãng đường vật đi được trong 0,175π (s) đầu tiên là
A. 5 cm
B. 35 cm
C. 30 cm
D. 25 cm
Câu 5. Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 5cos(8t + /3) cm. Quãng đường vật đi
được từ thời điểm t = 0 đến thời điểm t = 1,5 (s) là
A. 15 cm
B. 135 cm
C. 120 cm
D. 16 cm
Câu 6. Một vật dao động điều hoà dọc theo trục Ox với phương trình: x = 3cos(4t - /3) cm. Quãng đường vật đi
được từ thời điểm t = 0 đến thời điểm t = 2/3 (s) là
A. 15 cm
B. 13,5 cm
C. 21 cm
D. 16,5 cm
Câu 7. Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 5cos(t +2/3) cm. Quãng đường vật đi
được từ thời điểm t1 = 2 (s) đến thời điểm t2 = 19/3 (s) là:
A. 42.5 cm
B. 35 cm
C. 22,5 cm
D. 45 cm
Câu 8. Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 5cos(t + 2/3) cm. Quãng đường vật đi
được từ thời điểm t1 = 2 (s) đến thời điểm t2 = 17/3 (s) là:
A. 25 cm
B. 35 cm
C. 30 cm
D. 45cm
Câu 9. Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 5cos(t + 2/3) cm. Quãng đường vật đi
được từ thời điểm t1 = 2 (s) đến thời điểm t2 = 29/6 (s) là:
A. 25 cm
B. 35 cm
C. 27,5 cm
D. 45 cm
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
10
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
Câu 10. Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 7cos(5t + /9) cm. Quãng đường vật đi
được từ thời điểm t1 = 2,16 (s) đến thời điểm t2 = 3,56 (s) là:
A. 56 cm
B. 98 cm
C. 49 cm
D. 112 cm
Câu 11. Vật dao động điều hòa theo phương trình: x A cos(t ) . Vận tốc cực đại của vật là vmax = 8 cm/s và
gia tốc cực đại amax = 162 cm/s2. Trong thời gian một chu kỳ dao động, vật đi được quãng đường là:
A. 20cm;
B. 16cm;
C. 12cm;
D. 8cm.
Câu 12. Một con lắc lò xo dao động điều hòa với biên độ 6cm và chu kì 1s. Tại t = 0, vật đi qua vị trí cân
bằng theo chiều âm của trục toạ độ. Tổng quãng đường đi được của vật trong khoảng thời gian 2,375s kể từ
thời điểm được chọn làm gốc là:
A. 48cm
B. 50cm
C. 55,76cm
D. 42cm
Dạng 2 : Xác định thời điểm- số lần vật đi qua một vị trí xác định
I.Để xác định thời điểm một vật dao động điều hoà đi qua một điểm đã cho x hoặc v, a, F, Wđ, Wt.
1.Phƣơng pháp : Phương trình dao động có dạng: x Acos(t + φ) cm
Phương trình vận tốc:
v –Asin(t + φ) cm/s
m
2
t 2 t1
n +
với T
T
T
Trong một chu kỳ :
+ vật đi đƣợc quãng đƣờng 4A
+ Vật đi qua ly độ bất kỳ 2 lần
* Nếu m 0 thì: + Quãng đường đi được: ST n.4A
Tính số chu kỳ dao động từ thời điểm t1 đến t2 : N
+ Số lần vật đi qua x0 là MT 2n
* Nếu m 0 thì : + Khi t t1 ta tính x1 = Acos(t1 + φ)cm và v1 dương hay âm (không tính v1)
+ Khi t t2 ta tính x2 = Acos(t2 + φ)cm và v2 dương hay âm (không tính v2)
m
chu kỳ rồi dựa vào hình vẽ để tính Slẽ và số lần Mlẽ vật đi qua x0 tương ứng.
T
Khi đó: + Quãng đường vật đi được là: S ST +Slẽ
Sau đó vẽ hình của vật trong phần lẽ
+ Số lần vật đi qua x0 là: MMT + Mlẽ
II.Xác định Số lần vật đi qua vị trí cho trƣớc xo trong khoảng thời gian t= t1 đến t2
1.Phƣơng pháp 1: Phương trình dao động có dạng: x Acos(t + φ) cm
Bước 1: -Xác định vị trí của vật tại thời điểm t1 là x1 và tại thời điểm t2 là x2
và chiều chuyển động của vật tại thời điểm t1 và t2: (v1 và v2 chỉ cần xác định dấu)
M2
Bước 2: -Phân tích: Δt = t2 – t1 = nT + t0
(n ЄN; 0 ≤ t0 < T)
Bước 3: -Từ hình vẽ ta xác định được trong khoảng thời gian t0 vật
chuyển động từ M1 -> M2 qua vị trí x0 no lần.
Suy ra số lần vật đi qua vị trí x0 trong khoảng thời gian từ t1 là t2 là N= 2n+ n0.
-A
M1
x1
x2
O
x0
A
x
Phƣơng pháp 2:
Xác định trong khoảng thời gian Δt vật qua một vị trí cho trước bao nhiêu lần.
+ Biểu diễn trên vòng tròn , xác định vị trí xuất phát.
Hình 12
+ Xác định góc quét Δφ = Δt.ω
+ Phân tích góc quét Δφ = n1.2π + n2.π + Δφ’ ; n1 và n2 : số nguyên ; ví dụ : Δφ = 9π = 4.2π + π
+ Biểu diễn và đếm trên vòng tròn.
- Khi vật quét một góc Δφ = 2π (một chu kỳ thì qua một vị trí bất kỳ 2 lần , một lần theo chiều dương , một
lần theo chiều âm )
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
11
HY NG K KấNH YOUTUBE : NGUYN MINH DNG LTH MễN VT Lí MIN PH
CCH NH NHANH S LN HAI VT GP NHAU CA 2 VT DAO NG IU HếA
KHễNG CNG BIấN V Cể CNG TN S GểC
M
a.C S L THUYT:
Hai vt phi cựng v trớ cõn bng, biu din bng hai ng trũn ng tõm nh hỡnh v.
Khi gp nhau thỡ hỡnh chiu ca chỳng trờn trc honh trựng nhau.
Phn chng minh di õy s cho thy:
Chỳng gp nhau hai ln liờn tip cỏch nhau T/2
Gi s ln gp nhau ban u hai cht im v trớ M, N .
N
Do chỳng chuyn ng ngc chiu nhau, nờn cú th gi s M chuyn ng ngc
chiu kim ng h cũn N chuyn ng thun chiu kim ng h.
Nhn xột:
M
-Lỳc u MN bờn phi v vuụng gúc vi trc honh ( hỡnh chiu ca chỳng trờn trc honh trựng nhau)
-Do M,N chuyn ng ngc chiu nhau nờn chỳng gp nhau bờn trỏi ng trũn
-Khi gp nhau ti v trớ mi M v N thỡ MN vn phi vuụng gúc vi trc honh
-Nhn thy tam giỏc OMN v OMN bng nhau, v chỳng hon ton i xng qua trc tung
N
-Vy thi gian chỳng gp nhau ln 1 l T/2,
b.CễNG THC TNH S LN HAI VT GP NHAU:
T c s lớ thuyt trờn,ta hon ton tớnh c tng quỏt s ln gp nhau:
Gi thi gian bi cho l t, T/2= i. S ln chỳng gp nhau sau thi gian t:
t
n bng phn nguyờn ca t chia na chu kỡ.
i
Chỳ ý: Xem lỳc t=0 chỳng cú cựng v trớ hay khụng, nu cựng v trớ v tớnh c ln ú thỡ s ln s l n+1
c.V D:
Cho 2 vật dao động theo 2 ph-ơng trình x1 = 3 cos (5 t - / 3 ) cm và x1 = 3 cos (5 t - / 6 ) cm . Trong
1s kể từ t = 0,2s vật gặp nhau mấy lần?
M
Gii: Chu kỡ T=0,4s, T/2=0,2s. Sau t= 1s :
300
Ban u hai vt cựng v trớ x=3/2cm ; S ln gp nhau k t ú: n =1/0,2=5
-6
0
+6
Vy nu khụng k ti v trớ t=0 thỡ cú 5 ln, nu k c t=0 thỡ cú 6 ln
2.CỏcVớ d :
Vớ d 1: Vt d...d vi phng trỡnh : x = 6cos(5t + /6)cm (1)
a.Trong khong thi gian 2,5s vt qua v trớ x = 3cm my ln.
b.Trong khong thi gian 2s vt qua v trớ x = 4cm theo chiu dng my ln.
c.Trong khong thi gian 2,5s vt qua v trớ cõn bng theo chiu dng my ln.
d.Trong khong thi gian 2s vt qua v trớ cõn bng my ln.
N
Gii:
Trc tiờn ta biu din pt (1) trờn vũng trũn, vi = /6(rad)
-Vt xut phỏt t M , theo chiu õm. (Hỡnh 13 )
-6
a.Trong khong thi gian t = 2,5s
=> gúc quột = t. = 2,5.5 = 12,5 = 6.2 + /2
T vũng trũn ta thy: (Hỡnh 14)
- trong mt chu k vt qua x = 3cm c 2 ln ti P(chiu õm ) v Q(chiu dng )
- trong 1 = 6.2 ; 6 chu k vt qua x = 3cm c 6.2 = 12 ln
- cũn li 2 = /2 t M N vt qua x = 3cm mt ln ti P(chiu õm )
Vy: Trong khong thi gian t = 2,5s vt qua x = 3cm c 13 ln
b.Trong khong thi gian t = 2 s
=> gúc quột = t. = 2.5 = 10 = 5.2
Vt thc hin c 5 chu k (quay c 5 vũng)
T vũng trũn ta thy: (Hỡnh 15)
- trong mt chu k vt qua v trớ x = +4cm theo chiu dng c mt ln , ti N
Vy : trong 5 chu k thỡ vt qua v trớ x = 4cm theo chiu dng c 5 ln
c.Trong khong thi gian t = 2,5s
Hỡnh 13
P
M
300
0
3
+6
Q
Hỡnh 14
M
-6
0
+4
+6
N
Hỡnh 15
P
M
-6
0
+6
Hỡnh 16
N
FB: KT BN BIT THễNG TIN V KHểA HC
12
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
=> góc quét Δφ = Δt.ω = 2,5.5π = 12,5π = 6.2π + π/2
Từ vòng tròn ta thấy: (Hình 16)
- Trong một chu kỳ vật qua vị trí cân bằng theo chiều dương 1 lần tại N.
- Trong Δφ1 = 6.2π ; 6 chu kỳ vật qua vị trí cân bằng theo chiều dương 6 lần tại N.
- Còn lại Δφ2 = π/2 từ M →P vật qua không qua vị trí cân bằng theo chiều dương lần nào.
Vậy trong khoảng thời gian Δt = 2,5s vật qua vị trí cân bằng theo chiều dương 6 lần.
d.Trong khoảng thời gian Δt = 2s
=> góc quét Δφ = Δt.ω = 2.5π = 10π = 5.2π
Vật thực hiện được 5 chu kỳ (quay được 5 vòng)
Từ vòng tròn ta thấy: (Hình 17)
- Trong một chu kỳ vật qua vị trí vị trí cân bằng 2 lần tại P(chiều âm ) và Q(chiều dương ) .
- Vậy trong khoảng thời gian Δt = 2s vật qua vị trí vị trí cân bằng 10 lần .
P
M
-6
0
+6
Hình
Q
Ví dụ 2: Một vật dao động điều hoà với phương trình x = 8cos(2t) cm. Thời điểm thứ nhất
vật đi qua vị trí cân bằng là:
1
A) s
4
1
B) s
2
1
C) s
6
M1
1
D) s
3
Giải Cách 1: Vật qua VTCB: x = 0 2t = /2 + k t
1 k
k N
4 2
M0
-A
O
Thời điểm thứ nhất ứng với k = 0 t = 1/4 (s)
Giải Cách 2: Dùng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều.
Vật đi qua VTCB, ứng với vật chuyển động tròn đều qua M1 hoặc M2.(Hình 18)
Vì = 0, vật xuất phát từ M0 nên thời điểm thứ nhất vật qua VTCB ứng với vật qua M1.
M2
1
Khi đó bán kính quét góc = /2 t
s
4
Ví dụ 3: Một vật dao động điều hoà với phương trình x = 4cos(4t +
theo chiều dương.
A) 9/8 s B) 11/8 s
C) 5/8 s
17
x
A
Hình 18
) cm. Thời điểm thứ 3 vật qua vị trí x = 2cm
6
M1
M0
D) 1,5 s
x 4cos(4 t ) 2
x 2
6
Giải Cách 1: Ta có
4 t k 2
6
3
v 0 v 16 sin(4 t ) 0
6
1 k
11
t
Thời điểm thứ 3 ứng với k = 3 t s
k N* .
8 2
8
x
O
A
A
M2
Hình 19
Giải Cách 2: Dùng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều.Vật qua x = 2 theo chiều dương là
qua M2.Qua M2 lần thứ 3 ứng với vật quay được 2 vòng (qua 2 lần) và lần cuối cùng đi từ M0 đến M2.(Hình 19)
Góc quét = 2.2 +
3
11
t
s
2
8
Ví dụ 4: Một vật dao động điều hoà với phương trình x = 4cos(4t +
)cm. Thời điểm thứ 2013 vật qua vị trí
6
M1
x=2cm.
12061
24157
s
s D) Đáp án khác
C)
24
24
1 k
4 t 6 3 k 2
t 24 2 k N
Giải Cách 1: x 2
4 t k 2
t 1 k k N*
8 2
6
3
A)
12073
s
24
M0
B)
x
O
-A
A
Hình 20
M2
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
13
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
2013 1
1006
2
Vật qua lần thứ 2013(lẻ) ứng với nghiệm trên k
t
1
12073
503 =
s -> Đáp án A
24
24
Giải Cách 2: Vật qua x =2 là qua M1 và M2. Vật quay 1 vòng (1 chu kỳ) qua x = 2 là 2 lần.
Qua lần thứ 2013 thì phải quay 1006 vòng rồi đi từ M0 đến M1.(Hình 20)
Góc quét 1006.2
6
t
503
Ví dụ 5: Một vật dao động điều hoà với x=8cos(2tA) 1005,5s
B)1005s
C)2012 s
1 12073
s Đáp án A
24
24
) cm. Thời điểm thứ 2012 vật qua vị trí có v= -8 cm/s.
6
D) 1005,5s
Bài gỉai: Cách 1: Ta có v = -16sin(2t- ) = -8
6
1
2 t k 2
t k
4 3
6 6
6
kN
5
1
2 t
k 2
t k
2
6 6
Thời điểm thứ 2012 ứng với nghiệm dưới k
Cách 2: Ta có x
2012
1
1 1005 t 1005 1005,5 s
2
2
4 3
Hình 21
v
A2 ( )2 4 3cm .Vì v < 0 nên vật qua M1 và M2; Qua lần thứ 2012 thì phải quay 1005
vòng rồi đi từ M0 đến M2. Góc quét = 1005.2 + t = 1005,5 s . (Hình 21)
Ví dụ 6: Một vật dao động điều hoà với phương trình x=8cos(2t-
) cm. Thời điểm thứ nhất vật qua vị trí có động
3
năng bằng thế năng.
A)
1
s
8
B)
1
s
24
C)
5
s
8
D) 1,5s
1 2 2 2
1
m A sin (2 t ) m 2 A2co s2 (2 t )
2
3 2
3
2
2
7 k
cos(4 t ) 0 4 t k t
k [-1;)
3
3 2
24 4
Giải Cách 1:Wđ = Wt
Thời điểm thứ nhất ứng với k = -1 t = 1/24 s
Giải Cách 2: Wđ = Wt Wt
1
A
có 4 vị trí M1, M2, M3, M4 trên đường tròn.
W x=
2
2
Hình 22
Thời điểm đầu tiên vật qua vị trí Wđ = Wt ứng với vật đi từ M0 đến M4 .(Hình 22)
Góc quét:
3
4
12
t
1
s
24
Ví dụ 7: Một vật dao động điều hoà với phương trình x=8cos(t-
) cm.
4
Thời điểm thứ 2010 vật qua vị trí có động năng bằng 3 lần thế năng.?
4
4
2
2
2
Giải Cách 1: Wđ = 3Wt sin ( t ) 3co s ( t ) cos(2 t )
1
2
2
7
2 t 2 3 k 2
t 12 k k N
2 t 2 k 2
t 1 k k N *
2
3
12
Hình 23
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
14
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
Qua lần thứ 2010 ứng với nghiệm dưới k = 1005 t
Giải Cách 2: Wđ = 3Wt Wt
12059
s
12
1
A
W x có 4 vị trí trên đường tròn M1, M2, M3, M4.
4
2
Qua lần thứ 2010 thì phải quay 502 vòng (mỗi vòng qua 4 lần) rồi đi từ M0 đến M2. .(Hình 23)
Góc quét 502.2 (
11
11 12059
. => t
) 1004
1004
s
3 4
12
12
12
3.Trắc nghiệm:
Câu 1: Cho một vật dao động điều hòa có phương trình chuyển động x 10cos(2 t ) (cm). Vật đi qua vị
6
trí cân bằng lần đầu tiên vào thời điểm
A. 1 / 3 s.
B. 1 / 6 s.
C. 2 / 3 s.
D. 1 / 12 s.
Câu 2: Một vật dao động điều hoà với ly độ x 4cos(0,5 t 5 / 6)(cm) trong đó t tính bằng (s) .Vào thời
điểm nào sau đây vật đi qua vị trí x = 2 3 cm theo chiều dương của trục toạ độ
A. t = 1s.
B. t = 2s.
C. t = 16 / 3 s.
D. t = 1 / 3 s.
Câu 3: Một vật dao động điều hoà theo phương trình x = 10cos(2 t + / 4 )cm thời điểm vật đi qua vị trí
cân bằng lần thứ 3 là
A. 13 / 8 s.
B. 8 / 9 s.
C.1s.
D. 9 / 8 s.
Câu 4: Một vật dao động điều hòa có phương trình x = 8cos10πt. Xác định thời điểm vật đi qua vị trí x = 4
lần thứ 2 theo chiều âm kể từ thời điểm bắt đầu dao động.
A. 2/30s.
B. 7/30s.
C. 3/30s.
D. 4/30s.
Câu 5: Một vật dao động điều hòa với phương trình x 10sin(0,5 t / 6)cm thời gian ngắn nhất từ lúc
vật bắt đầu dao động đến lúc vật qua vị trí có li độ 5 3cm lần thứ 3 theo chiều dương là
A. 7s.
B. 9s.
C. 11s.
D.12s.
Câu 6: Một vật dao động điều hoà với phương trình x 4cos(4t + π/6) cm. Thời điểm thứ 3 vật qua vị trí
x 2cm theo chiều dương.
A. 9/8 s
B. 11/8 s
C. 5/8 s
D.1,5 s
Câu 7: Vật dao động điều hòa có ptrình : x 5cosπt (cm).Vật qua VTCB lần thứ 3 vào thời điểm :
A. 2,5s.
B. 2s.
C. 6s.
D. 2,4s
Câu 8: Vật dao động điều hòa có phương trình: x 4cos(2πt - π) (cm, s). Vật đến vị trí biên dương lần thứ
5 vào thời điểm
A. 4,5s.
B. 2,5s.
C. 2s.
D. 0,5s.
Câu 9: Một vật dao động điều hòa có phương trình : x 6cos(πt π/2) (cm, s). Thời gian vật đi từ VTCB
đến lúc qua điểm có x 3cm lần thứ 5 là
A. 61/6s.
B. 9/5s.
C. 25/6s.
D. 37/6s.
Câu 10: Một vật dao động điều hòa có phương trình x 8cos10πt(cm). Thời điểm vật đi qua vị trí x
4(cm) lần thứ 2008 theo chiều âm kể từ thời điểm bắt đầu dao động là :
12043
10243
12403
12430
(s).
B.
(s)
C.
(s)
D.
(s)
30
30
30
30
Câu 11: Một vật dao động với phương trình x = 10cos(2πt + π/4) cm. Khoảng thời gian kể từ thời điểm t = 0 đến
thời điểm vật có li độ x = 5 cm lần thứ 5 bằng
A. 2,04 s.
B. 2,14 s.
C. 4,04 s.
D. 0,71 s.
Giải: T= 1s . Vật qua vị trí x= 5 cm 5 lần ứng 2 vòng tròn( 2.2) và 1/24 vòng ( 150) :
Từ vòng tròn lượng gíac suy ra: t = 2T + T/24 = 2.1 +1/24=2,04s
A.
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
15
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
Dạng : Xác định số lần vật đi qua vị trí có li độ x0 bất kì
Câu 1: Một chất điểm dao động điều hoà có vận tốc bằng không tại hai thời điểm liên tiếp là t 1=2,2 (s) và
t2= 2,9(s). Tính từ thời điểm ban đầu ( t1 = 0 s) đến thời điểm t2 chất điểm đã đi qua vị trí cân bằng
A. 4 lần.
B. 6 lần .
C. 5 lần .
D. 3 lần .
Câu 2: Một vật dao động điều hoà với phương trình x = 2cos(2 t - /2) cm. Sau thời gian 7/6 s kể từ thời
điểm ban đầu vật đi qua vị trí x = 1cm
A. 2 lần
B. 3 lần
C. 4lần
D. 5lần
Câu 3: Một chất điểm dao động điều hòa theo phương trình x = 3 cos (5πt + π/6)(x tính bằng cm và t tính
bằng giây). Trong một giây đầu tiên từ thời điểm t = 0, chất điểm đi qua vị trí có li độ x = + 1 cm
A. 7 lần.
B. 6 lần.
C. 4 lần.
D. 5 lần.
Câu 4: Một vật dao động theo phương trình x = 2cos(5t + /6) + 1 (cm). Trong giây đầu tiên kể từ lúc vật
bắt đầu dao động vật đi qua vị trí có li độ x = 2cm theo chiều dương được mấy lần?
A. 2 lần
B. 4 lần
C. 3 lần
D. 5 lần
Câu 5: Một chất điểm dao động điều hòa theo phương trình x 3sin 5t (x tính bằng cm và t tính
6
bằng giây). Trong một giây đầu tiên từ thời điểm t = 0, chất điểm đi qua vị trí có li độ x = +1cm
A. 7 lần.
B. 6 lần.
C. 4 lần.
D. 5 lần.
Dạng : Xác định vị trí của vật tại thời điểm t t khi biết li độ của vật tại thời điểm t
Câu 1: Một vật dao động điều hòa với phương trình: x 4cos(2 t
) cm và đang chuyển đông theo
3
chiều âm. Vào thời điểm tvật có li độ x = 2 3 cm. Vào thời điểm t + 0,25s vật đang ở vị trí có li độ
A. -2cm.
B. 2cm.
C. 2 3 .
D. - 2 3 .
Câu 2: Một vật dao động điều hòa với phương trình: x 2cos(4 t
) cm và đang chuyển đông theo
3
chiều dương. Vào thời điểm tvật có li độ x = 2 cm. Vào thời điểm trước đó 0,25s vật đang ở vị trí có li
độ
A. 2cm.
B. - 2 cm.
C. - 3 cm.
D. 3 cm.
Câu 3: Một con lắc lò xo dao động với phương trình x 6cos(4 t ) cm. Tại thời điểm t vật có vận tốc
2
24 cm / s và li độ của vật đang giảm. Vào thời điểm 0,125s sau đó vận tốc của vật là
A. 0cm/s.
B. - 12 cm/s.
C. 12 2 cm/s.
D. - 12 2 cm/s.
Câu 4: Một con lắc lò xo có m = 100g, lò xo có độ cứng k = 100N/m. Con lắc lò xo dao động điều hòa
theo phương ngang với biên độ 4 cm. Tại thời điểm t vật ở vị trí có động năng bằng 3 lần thế năng và tốc
độ của vật đang giảm. Tại thời điểm 7/60 s sau đó vật đang ở vị trí có li độ
A. 2 3 cm hoặc - 2 3 .
B. 2 2 cm hoặc - 2 2 cm. C. 0cm.
D. 2cm hoặc -2cm
Câu 6: Một vật có khối lượng m = 100(g) dao động điều hoà trên trục Ox với tần số f =2(Hz), biên độ 10
cm. Lấy 2 10 . Tại thời điểm t1 vật có li độ x1= -5cm, sau đó 1,25(s) thì vật có thế năng
A.20mJ
B.15mJ
C.12,8mJ
D.5mJ
Câu 7: Một vật dao động điều hoà với tần số f = 5Hz. Tại thời điểm t1 vật có động năng bằng 3 lần thế năng.
1
Tại thời điểm t2= (t1 + )s động năng của vật
30
A. bằng 3 lần thế năng hoặc bằng cơ năng
B. bằng 3 lần thế năng hoặc bằng không
C. bằng 1/3 lần thế năng hoặc bằng không.
D. bằng 1/3 lần thế năng hoặc bằng cơ năng.
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
16
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
Dạng 3 : Xác định thời gian ngắn nhất để vật đi từ vị trí có li độ x1 đến x2
1.Phƣơng pháp:
(Ta dùng mối liên hệ giữa DĐĐH và CĐTĐ đều để tính)
-Khi vật dao động điều hoà từ x1 đến x2 thì tương ứng với vật chuyển động tròn
đều từ M đến N ( x1 và x2 là hình chiếu của M và N lên trục OX) (Hình 24)
Thời gian ngắn nhất vật dao động từ x1 đến x2 bằng thời gian vật
chuyển động tròn đều từ M đến N
x
co s 1 1
MON
A và ( 0 , )
tMNΔt = 2 1 =
T với
1
2
360
co s x 2
2
A
x ?
-Xác định vị trí vật lúc đầu t =0 thì 0
v0 ?
- Xác định vị trí vật lúc t (xt đã biết)
- Xác định góc quét Δφ = MOM' ?
2 1 = T
- Xác định thời gian: t
2
2
x2
Hƣớng dẫn giải : Ta có tần số góc:
A x
x1
O
N'
M'
N
-A
M
x2
O
Ví dụ 1: Một vật dao động điều hòa với chu kỳ T = 8s, tính thời gian ngắn nhất vật đi từ vị trí x
A
2
1
A
x1
N X
Hình 24
2.Các ví dụ:
li độ x
M
N
A
đến vị trí có
2
2 2
(rad / s)
T
8 4
Vậy thời gian ngắn nhất mà vật đi từ x
A
A
4
đến x là t ( s) .
2
2
3
Ví dụ 2 : Một vật dao động điều hòa với chu kỳ T và biên độ là A. Tìm thời gian ngắn nhất mà vật đi từ vị trí:
a. x = 0 (vị trí cân bằng) đến vị trí x = A.
b. x = 0 (vị trí cân bằng) đến vị trí x
c. x
A
.
2
A
đến vị trí x = A.
2
Hƣớng dẫn giải : Thực hiện các thao tác như ví dụ 10 chúng ta có:
a.
b.
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
17
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
c.
Ví dụ 3 : Một vật dao động với chu kì T. Ban đầu kéo vật ra khỏi vị trí cân bằng 4cm rồi thả nhẹ cho vật dao
dộng. Trong nữa chu kì đầu , khoảng thời gian nhỏ nhất để gia tốc của vật có độ lớn không vượt quá 20 2
T
2
m/s2 là 4 . Lấy 10 . Tần số dao động của vật bằng bao nhiêu?
Nhắc lại phƣơng pháp ở trên:
1.Phƣơng pháp: (Ta dùng mối liên hệ giữa DĐĐH và CĐTĐ đều để tính)
M
-Khi vật dao động điều hoà từ x1 đến x2 thì tương ứng với vật chuyển động tròn
đều từ M đến N ( x1 và x2 là hình chiếu của M và N lên trục OX) (Hình 25)
Thời gian ngắn nhất vật dao động từ x1 đến x2 bằng thời gian vật
chuyển động tròn đều từ M đến N
x1
co s 1 A
2 1
MON
tMNΔt =
=
T với
và ( 0 1, 2 )
360
co s x 2
2
A
x ?
-Xác định vị trí vật lúc đầu t =0 thì 0
v0 ?
- Xác định vị trí vật lúc t (xt đã biết)
- Xác định góc quét Δφ = MOM' ? Xác định thời gian: t
2
A
x2
O
1
A x
x1
N'
M'
Hình 25
2 1
= T
2
2.Giải: Khoảng thời gian nhỏ nhất là từ x1 đến x2:
T
2 1
Đề cho t
= 4 = T => = /2 ( hình 2)
N
N
M
2
ứng với ly độ x từ x1 đến x2: x1= A
2
2
đến x2 = - A
( hình 26)
2
2
Ta chỉ xét giá trị độ lớn của gia tốc ứng với x1 hoặc x2 :
a 2000 2
1000
4
x1
2
2
10
=> = 10 rad/s . Tần số f =
5(Hz)
2 2
-A
x2
O
x1
N X
a = 2.x .Suy ra 2
Hình 26
2.Trắc nghiệm:
Câu 1. Vật dao động điều hòa theo phương trình: x 4cos(8πt – π/6)cm. Thời gian ngắn nhất vật đi từ x1
–2 3 cm theo chiều dương đến vị trí có li độ x1 2 3 cm theo chiều dương là :
A. 1/16(s).
B. 1/12(s).
C. 1/10(s)
D. 1/20(s)
Câu 2. Một vật dao động điều hòa với chu kì T 2s. Thời gian ngắn nhất để vật đi từ điểm M có li độ x
+A/2 đến điểm biên dương (+A) là
A. 0,25(s).
B. 1/12(s)
C. 1/3(s).
D. 1/6(s).
Câu 3: Vật dđđh: gọi t1là thời gian ngắn nhất vật đi từ VTCB đến li độ x = A/2 và t2 là thời gian vật đi từ vị
trí li độ x = A/2 đến biên dương. Ta có
A. t1 = 0,5t2
B. t1 = t2
C. t1 = 2t2
D. t1 = 4t2
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
18
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
Câu 4: Một vật dao động điều hòa với tần số bằng 5Hz. Thời gian ngắn nhất để vật đi từ vị trí có li độ
x1 = - 0,5A (A là biên độ dao động) đến vị trí có li độ x2 = + 0,5A là
A. 1/10 s.
B. 1 s.
C. 1/20 s.
D. 1/30 s.
Câu 5: Một vật dao động điều hoà với tần số 2Hz, biên độ A. Thời gian ngắn nhất khi vật đi từ vị trí biên
đến vị trí động năng bằng 3 lần thế năng là
A.
1
s
6
B.
1
s
12
C.
1
s
24
D.
1
s
8
2
t + ). Thời gian ngắn nhất kể từ lúc bắt
T
2
đầu dao động tới khi vật có gia tốc bằng một nửa giá trị cực đại là
A. t = T / 12 .
B. t = T / 6 .
C. t = T / 3 .
D. t = 6T / 12
Câu 6: Một vật dao động điều hòa với phương trình x = Acos(
Câu 7: Con lắc lò xo dao động điều hoà theo phương thẳng đứng với phương trình x =5cos(20t+ ) cm.
3
Lấy g=10m/s2. Thời gian lò xo dãn ra trong một chu kỳ là
A.
s.
B.
s.
C.
s.
D.
s.
15
30
24
12
Câu 8: Một con lắc lò xo thẳng đứng , khi treo vật lò xo dãn 4 cm. Kích thích cho vật dao động theo
phương thẳng đứng với biên độ 8 cm thì trong một chu kì dao động T thời gian lò xo bị nén là
A. T/4.
B. T/2.
C. T/6.
D. T/3
Câu 9 (ĐH-2008): Một con lắc lò xo treo thẳng đứng. Kích thích cho con lắc dao động điều hòa theo phương
thẳng đứng. Chu kì và biên độ của con lắc lần lượt là 0,4s và 8cm. Chọn trục x’x thẳng đứng chiều dương
hướng xuống, gốc tọa độ tại VTCB, gốc thời gian t 0 vật qua VTCB theo chiều dương. Lấy g 10m/s2
và π2= 10. thời gian ngắn nhất kể từ khi t 0 đến lực đàn hồi của lò xo có độ lớn cực tiểu là :
A 7/30s.
B 1/30s.
C 3/10s.
D 4/15s.
Dạng 4: Tính quãng đƣờng lớn nhất, nhỏ nhất vật đi đƣợc trong khoảng thời gian Δt
( 0 < Δt < T/2).
1.Phƣơng pháp:
Trong dao động điều hòa:
- Quãng đƣờng lớn nhất: (hình 27)
Smax 2 Asin(
)
2
-Quãng đƣờng nhỏ nhất: (hình 28)
-Chú ý : + Trong trường hợp Δt > T/2
Hình 27
T
Tách: t n t ' Trong đó:
2
T
+Trong thời gian n quãng đường luôn là n.2A, nhỏ nhất
2
Hình 28
+Trong thời gian Δt’ thì quãng đường lớn nhất (Smax) ; nhỏ nhất ( Smin ) tính như trên.
+Tốc độ trung bình lớn nhất và nhỏ nhất trong thời gian Δt: vtb max
Smax
S
và vtb min min
t
t
2.Mô tả: Trong dao động điều hòa:
+Quãng đƣờng dài nhất vật đi được trong khoảng t (với 0 < t < T/2)
từ M đến N: Smax = MO + ON. Chọn gốc thời gian lúc vật qua
Nhanh
Chậm
x
E
N
M
J F
0
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ Hình
KHÓA
HỌC
29
19
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
VTCB theo chiều dương thì : x =A.cos(t-/2) = A.sint.
t
Smax 2.ON 2 A.sin .
(Hình 29)
2
+Quãng đƣờng ngắn nhất vật đi được trong khoảng t (với 0 < t < T/2)
từ J đến F rồi đến J: Smin = JF + FJ. Chọn gốc thời gian lúc vật biên dương thì : x = A.cost
t
Smin 2.JF 2 A 2 Acos . (Hình 19).
2
Thế t vào 2 công thức trên ta có:
A 3
A 3
A 2
A 2
S Max 3 A : Khi x
S Max 2 A.
Khi : x
T
2
2 ; t T
2
2
t
3
4
A 2
A 2
S A : Khi : x A A A
S Min A(2 2). Khi : x
A
Min
2
2
2
2
A
A
SMax A;
Khi : x
T
2
2
S ........ : x ..........
; t T Max
: Dùng máy tính tay
t
6
8
A 3
A 3
SMin ......... : x ..........
S A(2 3); Khi : x
A
Min
2
2
3.Các Ví dụ :
Ví dụ 1: Một vật dao động điều hòa với biên độ A và chu kỳ là T. Tìm quãng đường:
T
.
6
T
b. Lớn nhất mà vật đi được trong .
4
2.T
c. Nhỏ nhất mà vật đi được trong
.
3
a. Nhỏ nhất mà vật đi được trong
Hƣớng dẫn giải :
a. Góc mà vật quét được là : .t
2 T
T 6 3
Áp dụng công thức tính Smin ta có:
b. Góc mà vật quét được là: .t
2 T
T 4 2
Áp dụng công thức tính Smax ta có:
c. Do
Quãng đường mà vật đi được trong
T
luôn là 2A.
2
2T
T
chính là quãng đường nhỏ nhất mà vật đi được trong .
3
6
T
Theo câu a ta tìm được quãng đường nhỏ nhất mà vật đi được trong
là
.
6
2T
Vậy quãng đường nhỏ nhất mà vật đi được trong
là
3
Quãng đường nhỏ nhất mà vật đi được trong
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
20
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
Ví dụ 2 : Một vật dao động điều hòa với biên độ A và chu kỳ T. Tìm tốc độ trung bình nhỏ nhất và tốc độ trung bình
lớn nhất của vật trong
T
.
3
Hƣớng dẫn giải : Góc quét: .t
2 T 2.
T 3
3
S Max
3A 3 3A
vMax
1
t
T
T
T
3
=> t
3
v S Min A 3. A
Min
1
t
T
T
3
Ví dụ 3 : Vật dao động điều hòa với phương trình: x = 8cos (ωt + π/2) (cm). Sau thời gian t1 = 0,5 s kể từ thời
điểm ban đầu vật đi được quãng đường S1 = 4cm. Sau khoảng thời gian t2 = 12,5 s (kể từ thời điểm ban đầu) vật
đi được quãng đường:
A. 160 cm.
B. 68cm
C. 50 cm.
D. 36 cm.
Bài giải:
Khi t = 0 x = 0. Sau t1 = 0,5s --S1 = x = A/2. Vẽ vòng tròn
Ta có t1 = T/12 ---- Chu kì T = 6s
Sau khoảng thời gian t2 =12,5 s = 2T = 0,5s
Do đó S2= 8A + S1 = 68cm. ĐA: B
Ví dụ 4: Vật dao động điều hòa với phương trình x = 8cos(t+2)(cm). Sau thời gian t = 0,5s kể từ thời
điểm ban đầu vật đi được quãng đường S1 = 4cm. Sau khoảng thời gian t2 = 12,5s kể từ thời điểm ban đầu
quãng dường vật đi được là ?
A. S = 200 (cm)
B. S= 68 (cm)
C. S = 32,5 3 (cm) D. S= 64 3 (cm)
A 3
A 3
SMax 3 A : Khi x
T
2
2
t
3
A
A
SMin A : Khi : x A
2
2
Giải t=0 ==> (x=0, v<0) ( vật bắt đầu chuyển động từ vị trí cân bằng theo chiều âm)
SAU t1 =0,5s ,S1=4cm=A/2 -> t1 =T/12 =0,5 , T =6s; t2 = 12,5 =2T +T/12=> S=2.4A+A/2 = 17A/2 = 68cm
(1 chu kỳ quạng đường đi là 4A, 1/2 chu kỳ vật đi quãng đường 2A, 1/4 chu kỳ tính từ VTCB vật đi A)
4.Trắc nghiệm:
Câu 1: (CD-2008)Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T.
Trong khoảng thời gian T/4, quãng đường lớn nhất mà vật có thể đi được là
A. A
B. 1,5.A
D. A. 2
C. A. 3
Câu 2: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T. Trong
khoảng thời gian T/3, quãng đường lớn nhất mà vật có thể đi được là
A. A
B. 1,5.A
D. A. 2
C. A. 3
Câu 3: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T. Trong
khoảng thời gian T/4, quãng đường nhỏ nhất mà vật có thể đi được là
B. 1,5.A
D. A.(2 - 2 )
A. ( 3 - 1)A
C. A. 3
Câu 4: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T. Trong
khoảng thời gian T/3, quãng đường nhỏ nhất mà vật có thể đi được là
B. 1,5.A
D. A
A. ( 3 - 1)A
C. A. 3
Dạng 5: Bài toán tìm li độ, vận tốc dao động sau (trƣớc) thời điểm t một khoảng thời
gian Δt. Biết tại thời điểm t vật có li độ x = x0.
1.Phƣơng pháp:
– Biết tại thời điểm t vật có li độ x = x0.
– Từ phương trình dao động điều hoà : x = Acos(t + φ) cho x = x0
– Lấy nghiệm: t + φ = với 0 ứng với x đang giảm (vật chuyển động theo chiều âm vì v < 0)
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
21
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
hoặc
t + φ = –
ứng với x đang tăng (vật chuyển động theo chiều dương)
– Li độ và vận tốc dao động sau (trước) thời điểm đó t giây là :
x Acos(t )
x Acos(t )
hoặc
v A sin(t )
v A sin(t )
2.Các Ví dụ
Ví dụ 1. Vật dao động điều hòa theo phương trình: x 10cos(4πt +
)cm. Biết li độ của vật tại thời điểm t là 4cm.
8
Li độ của vật tại thời điểm sau đó 0,25s là :
Giải: Tại lúc t :
4 10cos(4πt + π/8)cm. Đặt : (4πt + π/8) α 4 10cosα
Tại lúc t +0,25: x 10cos[4π(t + 0,25) +π/8]10cos(4πt +π/8 +π) -10cos(4πt + π/8)4cm. Vậy: x -4cm
Ví dụ 2: Một vật dao động điều hòa với phương trình: x 10cos(4 t
8
)(cm) . Biết li độ của vật tại thời điểm t là
5cm. Xác định li độ của vật sau đó 0,25s
Giải: x0 = 5cm ta có: 5 10cos(4 t
1
) => cos( (4 t ) vì v< 0 nên lấy (4 t ) . Li độ và vận
8
8
2
8
3
tốc dao động sau thời điểm đó 0,25s = T/2 là: x = 10cos(4t.0,25+ /3) = -5cm
Câu 1. Vật dao động điều hòa theo phương trình : x 10cos(4πt +
)cm. Biết li độ của vật tại thời điểm t là
8
6cm, li độ của vật tại thời điểm t’ t + 0,125(s) là :
A. 5cm.
B. 8cm.
C. 8cm.
Câu 2. Vật dao động điều hòa theo phương trình : x 10cos(4πt +
D. 5cm.
)cm. Biết li độ của vật tại thời điểm t là 5cm, li
8
độ của vật tại thời điểm t’ t + 0,3125(s).
A. 2,588cm.
B. 2,6cm.
C. 2,588cm.
D. 2,6cm.
Câu 3. Một chất điểm dao động dọc theo trục Ox. Phương trình dao động là x = 5 cos (10t - 2 /3) (cm). Tại thời
điểm t vật có li độ x = 4cm thì tại thời điểm t’ = t + 0,1s vật có li độ là :
A. 4cm
B. 3cm
C. -4cm
D. -3cm
Câu 4. Một chất điểm dao động dọc theo trục Ox. Phương trình dao động là x = 10 cos (2t + /3) (cm). Tại thời
điểm t vật có li độ x = 6cm và đang chuyển động theo chiều dương sau đó 0,25s thì vật có li độ là :
A. 6cm
B. 8cm
C. -6cm
D. -8cm
Dạng 6: Bài toán ngƣợc: Cho quãng đƣờng xác định các đại lƣợng khác
1.Ví dụ 1: Một vật dao động điều hoà xung quanh vị trí cân bằng O. Ban đầu vật đi qua O theo chiều dương.
Sau thời gian t1= /15(s) vật chưa đổi chiều chuyển động và tốc độ giảm một nửa so với tốc độ ban đầu .
Sau thời gian t2=0,3 (s) vật đã đi được 12cm. Vận tốc ban đầu v0 của vật là:
A. 40cm/s
B. 30cm/s
C. 20cm/s
D. 25cm/s
Giải : Phương trình dao động của vật: x =Acos(ωt +φ)
Khi t = 0: x = 0 và v0 >0 ---- φ = -
Do đó ; x = Acos(ωt - ).
2
2
) = ωAcos(ωt) = v0cos(ωt)
2
v1 = v0cos(ωt1) =v0cos(ω ) = v0/2----cos(ω ) = 0,5= cos ;
15
15
3
Vận tốc của vật bằng 0 sau khoảng thời gian t: cos5t = 0 = cos ---- t=
10
2
Pt vận tốc : v = - ωAsin(ωt -
Suy ra: ω = 5 rad/s
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
22
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
Tức là chu kì T = 4t = 0,4π. Khoảng thời gian t2 = 0,3π= 3T/4;
vật đi đươc là 3A=12cm Biên độ A= 12:3= 4cm;
v0 = ωA = 20cm/s Chọn đáp án C: 20cm/s
2
Câu 1. Một vật dao động điều hòa với phương trình dao động x = Acos(t+). Biết trong khoảng thời gian 1/30(s)
A 3
đầu tiên, vật đi từ vị trí x0 = 0 đến vị trí x =
theo chiều dương. Chu kì dao động của vật là :
2
A. 0,2s
B. 5s
C. 0,5 s
D. 0,1 s
Câu 2: Con lắc lò xo dao động với biên độ A. Thời gian ngắn nhất để vật đi từ vị trí cân bằng đến điểm M
A 2
có li độ x
là 0,25(s). Chu kỳ của con lắc
2
A. 1s
B. 1,5s
C. 0,5s
D. 2s
Câu 3: Một con lắc lò xo dao động với biên độ A, thời gian ngắn nhất để con lắc di chuyển từ vị trí có li độ
x1 = - A đến vị trí có li độ x2 = A/2 là 1s. Chu kì dao động của con lắc là
A. 1/3 s.
B. 3 s.
C. 2 s.
D. 6s.
III.THÊM CÁC CHỦ ĐỀ VỀ QUÃNG ĐƢỜNG!
Chủ đề 1. Quãng đƣờng không phụ thuộc xuất phát(Quãng đƣờng theo nguyên hoặc bán
nguyên chu kỳ)
PHƢƠNG PHÁP
Đặt :
p
t2 t1
T
Dấu hiệu xuất phát từ biên hoặc vị trí cân bằng là: x1 = 0, ±A, v1 =0, ± .A, (t1 + ) = k. /2
Nếu p nguyên (ví dụ p = n) hay bán nguyên (ví dụ p = 6,5= n+0,5) thì: S = 4p.A
Nếu vật xuất phát từ biên hoặc vị trí cân bằng thì công thức
nguyên(ví dụ p =n+0,25 hay n+0,75)
S = 4p.A
được dùng thêm cho trường hợp tứ
BÀI TẬP ÁP DỤNG
1. Một vật dao động điều hoà với phương trình: x = 4cos(4t + /7)cm. t tính bằng giây. Tìm quãng đường vật đi
được trong 1 giây đầu
A. 16cm
B. 32cm
C. 8cm
D. đáp án khác
2. Một vật dao động điều hoà với phương trình: x = 4cos(4t + /7) + 0,5 cm. t tính bằng giây. Tìm quãng đường vật
đi được trong 1 giây đầu
A. 16cm
B. 32cm
C. 8cm
D. đáp án khác
3. Một con lắc đơn đếm giây dao động điều hoà với biên độ góc 0,04rad trong trọng trường. Tính quãng đường vật
đi được sau 10giây kể từ khi dao động
A. 160cm
B. 0,16cm
C. 80cm
D. chưa đủ dữ kiện
4. Một vật dao động điều hoà trên một quỹ đạo thẳng dài 6cm. thời gian đi hết chiều dài quỹ đạo là 1s. Tính quãng
đường vật đi được trong thời gian 10s đầu. Biết t = 0 vật ở vị trí cách biên 1,25cm
A.60cm
B. 30cm
C. 120cm
D. 31,25cm
5. Một vật có khối lượng 200g được gắn vào một lò xo có độ cứng K = 50N/m.
Hệ dao động trên mặt phẳng nghiêng có góc = 300. Bỏ qua ma sát. thời điểm t = 0 người ta đưa vật đến vị trí lò xo
không biến dạng rồi thả nhẹ. Tính quãng đường vật đi được sau khi thả 1,6s
A.64cm
B. 32cm
D. 128cm
D. 16cm
Chủ đề 2. Quãng đƣờng theo tứ nguyên chu kỳ
Nếu vật xuất phát từ biên hoặc vị trí cân bằng thì công thức S = 4p.A được dùng thêm cho trường hợp tứ
nguyên(ví dụ p =n+0,25 hay n+0,75)
6. Một vật dao động điều hoà trên một quỹ đạo thẳng với phương trình: x = 3cos(t + /2)cm. Tính quãng đường vật
đi được trong 6,5s đầu
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
23
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
A. 40cm
B. 39cm
C. 19,5cm
D. 150cm
7. Một vật dao động điều hoà trên một quỹ đạo thẳng với phương trình: x = 4cos(t + /3)cm.Tính quãng đường vật
đi được trong thời gian từ 1/6 đến
s
A.84cm
B. 162cm
C. 320cm
D. 80 + 23cm
8. Một vật dao động điều hoà trên một quỹ đạo thẳng với phương trình: x = 5cos(2t + )cm. Tính quãng đường vật
đi được trong 4,25s đầu
A. 42,5cm
B. 90cm
C. 85cm
D. 80 + 2,52cm
9. Một vật dao động điều hoà trên một quỹ đạo thẳng với phương trình: x = 2cos(t + /3)cm.Tính quãng đường vật
đi được trong thời gian từ 7/6 đến
s
A.42cm
B. 162cm
C. 32cm
D. 40 + 22cm
10. Một vật dao động điều hoà trên một quỹ đạo thẳng với phương trình: x = 3cos(t + /2) + 1,5cm. Tính quãng
đường vật đi được trong 6,5s đầu
A. 312cm
B. 39cm
C. 40cm
D. 154,5cm
11. Một vật dao động điều hoà trên một quỹ đạo thẳng với phương trình: x = 4cos(t+/3)+2cm. Tính quãng
đường vật đi được trong thời gian từ 1/6 đến
A.84cm
B. 162cm
s
C. 326cm
D. 80 + 23cm
Chủ đề 3. Quãng đƣờng theo vị trí xuất phát đặc biệt
PHƢƠNG PHÁP
Trường hợp xuất phát từ biên hoặc vị trí cân bằng (1 = k /2) nhưng p không phải tứ nguyên trở lên thì dùng
phương pháp này
Nếu t = 0 lúc vật ở biên thì cứ T/4 thì vật đi được quãng đường A.
Ta có thể tính S bằng cách phân tích t = n. T/4 +
Nếu n lẻ thì S = n.A + A.sin
(1)
còn n chẵn thì S = n.A + A.(1- cos ) (2)
- Nếu t = 0 lúc vật ở vị trí cân bằng thì ta làm tương tự nhưng n lẻ thì áp dụng công
thức (2)
Trên thưc tế khi HS thành thạo thì mọi trường hợp chỉ cần tính với đường tròn
Fresnel
BÀI TẬP ÁP DỤNG
12. Một vật nhỏ có khối lượng m = 100g được treo vào hệ 2 lò xo giống hệt nhau
mắc song song . Mỗi lò xo có độ cứng bằng 50N/m và có chiều dài 20cm. đầu còn
lại của lò xo được treo vào một điểm cố định. Thời điểm t = 0 người ta kéo vật sao cho lò xo có chiều dài 24cm
rồi thả nhẹ cho vật dao động điều hoà theo phương thẳng đứng. Tính quãng đường vật đi được sau 1,025s
A. 13cm
B. 63 – 1,52cm
C. 60 + 1,52cm
D. Đáp án khác
13. Cho phương trình dao động của một chất điểm: x = 4 cos(10t – 5/6) cm. Tính quãng đường vật đi được
trong thời gian từ t1 = 1/30s đến 49,75/30s
A. 128cm
B. 128 + 22cm
C. 132 – 22cm
D. đáp án khác
14. Một con đơn dao động với chu kỳ 1,5s và biên độ 3cm thời điểm ban đầu vật có vận tốc bằng 4 cm/s. Tính
quãng đường trong 9,75s đầu.
A. 29,25cm
B. 78cm
C. 75 + 1,53cm
D. 75cm
15. Một con lắc đơn gồm một vật nhỏ có khối lượng 50g. được treo vào một sợi dây dài 1m dao động điều hoà
trong trọng trường với biên độ 0,04rad. Khi t = 0 vật có động năng bằng 0,4mJ. Tính quãng đường vật đi được
trong thời gian t1 = 2s đến t2 = 31/3s
A. 66cm
B. 64cm
C. 64 + 22cm
D. 64 + 23cm
16. Một vật có khối lượng m = 200g được treo vào một lò xo nhẹ có độ cứng K = 50N/m. Vật được đặt trên dốc
chính của một mặt phẳng nghiêng có góc nghiêng = 300 điểm treo ở phía trên. Thời điểm t = 0 người ta kéo vật
đến vị trí lò xo giãn 6cm rồi thả nhẹ. Tìm quãng đường vật đi được từ khi lực đàn hồi bằng 1N lần đầu tiên đến
thời điểm t = 31/15s
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
24
HÃY ĐĂNG KÍ KÊNH YOUTUBE : NGUYỄN MINH DƢƠNG ĐỂ LTĐH MÔN VẬT LÝ MIỄN PHÍ
A. 82cm
B. 78cm
C. 122cm
D. 118cm
Chủ đề 4. Quãng đƣờng cực trị
PHƢƠNG PHÁP
Ta đã biết trong dao động điều hòa vật chuyển động càng nhanh nếu vật
chuyển động càng gần vị trí cânbằng và chuyển động càng nhanh nếu vật
chuyển động càng gần biên do đó trong cùng một khoảng thời gian t ≤ T/2
vật chuyển động được quãng đường dài nhất nếu vật chuyển động giữa 2
điểm đối xứng nhau qua vị trí cân bằng
Theo hình vẽ ta có:
Smax = 2A.sin
ˆ
MON
2
Mà MOˆ N = t thay vào (1) ta có: Smax = 2A.sin
.t
(55)
2
Trường hợp tính quãng đường ngắn nhất trong khoảng thời gian t thì vật đi từ một điểm đến biên rồi quay lại
chính điểm đó, tương tự trường hợp cực đại ta có:
Smin = 2A(1- cos
.t
2
)
(56)
Trường hợp tổng quát( t >T/2) ta cũng có thể tính quãng đường dựa vào đường tròn Fresnel
BÀI TẬP ÁP DỤNG
17. Tính vận tốc trung bình cực đại trong một phần tư chu kỳ dao động. Biết chu kỳ dao động bằng 2s, biên độ dao
động bằng 4cm
A. 82cm/s
B. 42cm/s
C. 8cm/s
D. 42cm/s
18. Một con lắc lò xo dao động với biên độ 6cm và chu kỳ 2s. Tính thời gian ngắn nhất để vật đi được quãng
đường bằng 6cm
A. 1/3s
B. 2/3s
C. 1/4s
D. 1/8s
19. Một con lắc lò xo dao động với biên độ 6cm và chu kỳ 2s. Tính thời gian ngắn nhất để vật đi được quãng
đường bằng 63cm
A. 1/3s
B. 2/3s
C. 1/4s
D. 1/8s
20. Một vật dao động điều hoà với phương trình: x = 5cos(10t + /3) + 2cm. Tính quãng đường lớn nhất vật đi
được trong thời gian 1/15s
A. 52cm
B. 5cm
C. 53cm
D. 103cm
21. Một vật dao động điều hoà với phương trình: x = 6cos(10t + /3) + 1,5cm. Tính toạ độ điểm xuất phát để
trong thời gian 1/15s vật đi được quãng đường ngắn nhất
A. 6cm
B. 3cm
C. 4,5cm
D. 33cm
(Còn một đáp án bằng -1,5cm)
22. Một vật dao động điều hoà với phương trình: x = 8cos(2t + /3) cm. Tìm vị trí xuất phát để trong khoảng thời
gian 5/6s vật đi được quãng đường dài nhất
A. 42cm
B. 43cm
C. 4cm
D. 16 + 83cm
Chủ đề 5. Quãng đƣờng tổng quát theo thời gian
PHƢƠNG PHÁP
Bài toán yêu cầu tính quãng đường trong một khoảng thời gian từ t1 đến t2 ta thực hiện các bước sau :
Viết phương trình dao động
Tính khoảng thời gian t = t2 – t1 so sánh với chu kỳ dao động T .(Chú ý các trường hợp đặc biệt)
Thiết lập biểu thức:
t = nT +
Trong đó n nguyên ( n N) Ví dụ T =1, t = 2,5 thì t =2.T +0,5
Quãng đường được tính theo công thức
S = 4nA + S
(3)
FB: –KẾT BẠN ĐỂ BIẾT THÔNG TIN VỀ KHÓA HỌC
25