ÔN TẬP KIỂM TRA MỘT TIẾT – CHƯƠNG 1
Phần Trắc Nghiệm (7đ)
y=
Câu 1: Hàm số
A. -1/3
Câu 2: Hàm số
A.
1
( x + 1) 2
Câu 3: Hàm số
A.
có GTLN trên đoạn [0;2] là:
B. -13/6
y=
y=
x3 x 2
+ − 2x −1
3 2
2− x
x +1
C. -1
có đạo hàm là:
y=−
B.
3
( x + 1) 2
y = x4 − 2 x2 −1
(−∞; −1); (0;1)
B.
y=
C.
(−1;0);(0;1)
1
x
R \ { − 1}
Câu 5: Số điểm cực trị của hàm số
A. 0
C.
Câu 7: Hàm số
A. (-1 ; 2)
Câu 8: Hàm số
2x − 3
4− x
D. R \ {2}
là:
x −1
x +1
C . x = −1
D. 3
là:
D. x = 1
có điểm cực đại là :
B. ( -1;0)
y=
D. Đồng biến trên R
C. 2
Câu 6: Tiệm cận đứng của đồ thị hàm số
B. y = −1
D = R \ {0}
y = x 4 + 100
B. 1
y = x 3 − 3x
D.
2
( x + 2) 2
là:
y=
A. y = 1
y=
(−1;0);(1; +∞)
C.
Câu 4: Tập xác định của hàm số
B. D =
3
( x + 1) 2
đồng biến trên khoảng nào sau đây:
y = x+
A. D = R
D. 0
C. (1 ; -2)
D. (1;0)
. Chọn phát biểu đúng:
GV: Phan Lan Thương- THPT Phan Đăng Lưu
1
A. Luôn đồng biến trên R
B. Đồng biến trên từng khoảng xác định
Câu 9: Hàm số
y = −x4 + x2
A. 1
, có số giao điểm với trục hoành là:
B. 2
C. 3
y=
Câu 10: Tiếp tuyến của đồ thị hàm số
A. 1/6
B. -1/6
Câu 11: Cho hàm số
C. Luôn nghịch biến trên từng khoảng xác định
D. Luôn giảm trên R
x +1
x−5
D. 4
tại điểm A( - 1 ; 0) có hệ số góc bằng
C. 6/25
y = 2 x 3 − 3x 2 + 1
D. -6/25
, có đồ thị ( C) . Chọn đáp án sai trong các đáp án sau:
A. Hàm số có 2 cực trị
B. Đồ thị hàm số đi qua điểm A( 2 ; 3)
C. Hàm số nghịch biến trên khoảng (0 ; 1)
D. Hàm số không có tiệm cận
Câu 12: Chọn phát biểu đúng trong các phát biểu sau đây:
y=
A. Hàm số
1
2x +1
y=x −x
4
B. Hàm số
không có tiệm cận ngang
2
y = x +1
không có giao điểm với đường thẳng y = -1
2
C. Hàm số
D. Đồ thị hàm số
có tập xác định là
y = x3 + x 2 − 2 x
D = R \ { − 1}
cắt trục tung tại 2 điểm
Câu 13: Hình vẽ sau đây là đồ thị của hàm số nào:
y
0
x
0
A. Bậc 3
x
1
B. Bậc 4
-2
Câu 14: Nhìn hình vẽ sau và chọn đáp án sai
C. Bậc 2
y
GV: Phan Lan Thương- THPT Phan Đăng Lưu
D. Phân thức hữu tỉ
2
A.
B.
C.
D.
Đồ thị hàm số có tiệm cận đứng x = 1
Đồ thị hàm số có tiệm cận ngang y = -2
Đồ thị cho thấy hàm số luôn nghịch biến trên từng khoảng xác định
Đồ thị cho thấy hàm số luôn đồng biến trên từng khoảng xác định
Nhìn bảng biến thiên sau đây, hãy điền từ còn thiếu vào các câu hỏi 15,16,17,18:
x
−∞
−
y’
y
−1
0
0
+
+∞
1
0
−
0
+
−3
+∞
-4
+∞
-4
Câu 15: Hàm số có....................cực đại và.........................cực tiểu.
Câu 16: Hàm số đồng biến trên khoảng.........................................................., nghich biến trên
khoảng.................................................................
Câu 17: Đây là bảng biến thiên của hàm số bậc.........................
Câu 18: Ghi lại ba điểm cực trị: A(....;......), B(....;......), C(....;......)
Câu 19: Hàm số y = f(x) có đạo hàm trên khoảng K và f’(x) = 0 chỉ tại một số điểm hữu hạn thì
nghịch biến trên K nếu:.........................................
Câu 20: Hàm số y = f(x) có đạo hàm cấp hai trong khoảng (x 0 – h ; x0+h), h > 0. Khi đó , hàm số sẽ
đạt cực tiểu tại điểm x0, nếu:..........................................và...............................................
GV: Phan Lan Thương- THPT Phan Đăng Lưu
3
y=
2x + 3
x −5
lim y = ...... ;
Câu 21: Cho hàm số
, nếu
cận..........................là ...............................
x →−∞
lim y = .........
x →+∞
thì đồ thị hàm số có tiệm
Câu 22: Chọn đáp án sai
y=
ax + b
cx + d
A. Đồ thị của hàm số
nhận giao điểm của hai tiệm cận làm tâm đối xứng
B. Số giao điểm của đồ thị hàm số y = f(x) với đường thẳng d: y = g(x) là số nghiệm của
phương trình f(x) = g(x)
C. Bất kỳ đồ thị hàm số nào cũng đều phải cắt trục tung và trục hoành
D. Số cực trị tối đa của hàm trùng phương là ba
Câu 23: Cho hàm số
x + 3x − 2 = m
3
y = x3 + 3x 2 − 2
có điểm cực đại là A(-2;2), Cực tiểu là B(0;-2) thì phương trình
2
có hai nghiệm phân biêt khi:
A. m = 2 hoặc m = -2
B. m > 2
C. m < -2
D. -2 < m < 2
y=
Câu 24: Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số:
A. song song với đường thẳng x = 1
B. Có hệ số góc dương
Câu 25: Phương trình
C. Song song với trục hoành
D. Có hệ số góc bằng -1
mx 2 + (2 + m) x − ( m − 1) = 0
có hai nghiệm phân biệt khi:
m≠0 ; m>4
A.
B. Với mọi m
C. với mọi
D. m > 0
A=B
Câu 26: Phương trình
A.
A = B2
Câu 27: Cho hàm số
A. 0
1 3
x − 2 x 2 + 3x − 5
3
B.
được giải là:
A2 = B
y = sin 2 x
B.
π
m≠0
C.
, khi đó
B≥0
π
y ''( )
4
C.
và
A=B
D.
B≥0
và
A = B2
bằng:
1
2
D. -4
GV: Phan Lan Thương- THPT Phan Đăng Lưu
4
Câu 28: Trong số các hình chữ nhật có cùng chu vi là 16cm, thì hình chữ nhật có diện tích lớn nhất
là hình chữ nhật đó có:
A.
B.
C.
D.
Chiều dài phải lớn gấp đôi chiều rộng
Chiều dài phải gấp bốn lần chiều rộng
Chiều dài bằng chiều rộng
Không có hình chữ nhật nào có diện tích lớn nhất
Phần tự luận(3đ):
Câu 1(1đ): Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
y = 8 − 2 x2
y=
Câu 2(1đ): Viết phương trình tiếp tuyến của đồ thị hàm số
đường thẳng d:
x+3
x −3
,biết tiếp tuyến vuông góc với
y = 6x + 5
Câu 3(1đ): Cho hàm số:y = x4 – 2(m + 1)x2 +m2 (1) với m là tham số. Tìm m để đồ thị hàm số (1) có
ba điểm cực trị A, B và C sao cho tam giác ABC có diện tích bằng 1
-------------------------------------------------------------Hết------------------------------------------------
GV: Phan Lan Thương- THPT Phan Đăng Lưu
5