Tải bản đầy đủ (.doc) (7 trang)

Lời giải đè thi DDH số 17

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (103.68 KB, 7 trang )

ĐẠI HỌC DÂN LẬP VĂN LANG –Khối A,B,D,V
Câu I:
a.Khảo sát hàm số :
2
4 8
2
+ +
=
+
x x
y
x
(C)
 TXĐ:
\{ 2}
= −
D R

2
2
4
'
( 2)
+
=
+
x x
y
x

0


' 0
4
=

= ⇔

= −

x
y
x
 Tiệm cận đứng: x = -2 vì
2
4
lim
2
→−
= ∞
+
x
x
 Chia tử cho mẫu:
4
2
2
= + +
+
y x
x



Tiệm cận xiên: y= x + 2 vì
4
lim 0
2
→∞
=
+
x
x
 BBT:

 Đồ thò:
( C )
( C 1 )
( I )
X
Y
( I I I )
- 4
O
4
2
( C 1 )
- 2
- 4
b.Từ đồ thò (C) suy ra đồ thò hàm số :
2
1
4 8

2
+ +
=
+
x x
y
x

1
( )C
Ta có :
1
nếu x > -2
-y nếu x < -2
y
y

=


Do đó đồ thò
1
( )C
suy từ (C) như sau:
- Nếu x > -2 thì
1
( ) ( )

C C
- Nếu x< -2 thì lấy phần đối xứng của (C) qua Ox ta được

1
( )C
c. Xác đònh tập hợp những điểm mà không có đồ thò nào trong họ
( )
m
C
ï đi qua:

2 2
4 8
2
+ + +
=
+
x x m
y
x

( )
m
C
Gọi
2 2
0 0
0 0 0
0
4 8
( , ) ( ),
2
+ + +

∉ ∀ ⇔ =
+
m
x x m
M x y C m y
x
vô nghiệm với mọi m
0
2⇔ = −x
hoặc
2 2
0 0 0 0
( 2) 4 8
= + − − −
m y x x x
vô nghiệm theo m.

2
0 0 0 0
2
0 0 0 0
2
0 0
0 0
0
2
0 0
0 0
0
( 2) 4 8 0

( 2) 4 8
x +4x +8
y < (nếu x >-2)
x +2
x +4x +8
y > (nếu x <-2)
x +2
y x x x
y x x x
⇔ + − − − <
⇔ + < + +









M miền (I) giới hạn bởi (C) với x > -2
M miền (III) giới hạn bởi (C) với x< -2






Vậy những điểm M thoả điều kiện bài toán là những điểm thuộc mặt phẳng toạ độ
Oxy, không nằm trên miền (I), miền (III) và không nằm trên (C).

Câu II:
Tính :
3
2
4cos
I =
1 sin
0
π

+
x
dx
x
Ta có:
3 2
4cos 4cos (1 sin )
1 sin 1 sin

=
+ +
x x x
x x
= 4 cosx (1-sinx)
= 4 cosx –2 sin2x
Suy ra:
2
(4sin cos 2 )
0
π

= +
I x x
= 2
Câu III:
Có 10 học sinh nam và 10 học sinh nữ. Chọn 5 học sinh trong đó có ít nhất:
1) 2 học sinh nữ và 2 học sinh nam:
Trường hợp 1: Số cách chọn 2 nữ và 3 nam:
2 3
10 10
×
C C
Trường hợp 2: Số cách chọn 3 nữ và 2 nam:
3 2
10 10
×
C C
Suy ra số cách chọn 3 nữ và 2 nam là:2.
3 2
10 10
×
C C
=10.800 (cách)
2) 1 học sinh nữ và 1 học sinh nam:
Số cách chọn không phân biệt nam, nữ:
5
20
C
Số cách chọn toàn nam hoặc toàn nữ:
5
10

C
Suy ra số cách chọn có ít nhất 1 nam hoặc 1 nữ là:
5 5
20 10
2

C C
=15.000 (cách)
Câu IV:
1. Cho
.9 4( 1).3 1
α α α
+ − + >
x x
a) Giải bất phương trình khi
2
α
=
.
Đặt
x
t =3
. Điều kiện: t > 0
Khi đó bất phương trình trở thành :
2
. 4( -1). 1
α α α
+ + >t t
(*)
Khi

2
α
=
: (*) trở thành:
2
2 4 2 1
+ + >
t t
luôn đúng
0
∀ >
t
.
Nghóa là nghiệm của bất phương trình là

¡x
.
b) Tìm
α
để bất phương trình đúng

x
.
Ta có : (*)
2
4 1
f (t)
4 1
α
+

⇔ > =
+ +
t
t t
Ta lại có :
2
2 2
4 2
f ' (t) 0
( 4 1)
− −
= <
+ +
t t
t t
,
0
∀ >
t
=> y = f(t) là hàm giảm trên
(0, )
+∞
Do vậy bất phương trình đúng

x
.

f (0)
1
α

α
⇔ ≥
⇔ ≥
2. Giải hệ phương trình :
sinx - 7cosy = 0 (1)
5siny - cosx - 6 = 0 (2)




cos 1≤x

sin 1

y
nên :
5sin cos 6 0
− − ≤
y x
Do vậy (2)
cos 1
sin 1
= −



=

x
y


x = π + k2π
(k,m )
π
y = + m2π
2


⇔ ∈



¢
Dễ dàng thấy x và y ở trên thoả (1).
Do vậy nghiệm của hệ là:
x = π + k2π
(k,m )
π
y = + m2π
2


⇔ ∈



¢
3. Cho cos2x + cos2y = 1. Tìm giá trò nhỏ nhất của
2 2
= +A tg x tg y

Vì cos2x + cos2y = 1 nên
0 cos 2 , cos 2 1
≤ ≤
x y
Ta có:

2
1 cos 2 1 cos 2
1 cos 2 1 cos 2
6 6 2
2 2
2 cos 2 cos 2 3
cos 2 cos 2
2
2
− −
= +
+ +
= − + ≥ − + =
+ +
+
 
+
 ÷
 
x y
A
x y
x y
x y

Mặt khác: Khi
1
cos 2 cos 2
2
= =
x y
thì
2
3
=
A
Do đó
2
3
=
MinA
Câu Va:
a.
ABMN
V

Ta có :
( , )
By AB
By B Ax
By Ax


⇒ ⊥





Vậy :

1
.
3
1 . 1
.
3 2 6
ABMN ABM
V NB S
a x
y axy
=
= =
A
a
y
y
d
x
x
B
M
N
b. Giá trò lớn nhất của
ABMN
V

2 2 2
2 2 2 2
2 2 2
• ABM có BM
• NBM có d
a x
d a x y
y BM

•∆ = +

⇒ − = +

•∆ = +


Ta có:
2 2 2 2
2d a x y xy− = + ≥
Vậy:

2 2
2 2
1 1 ( ) 1
. ( )
6 6 2 12
ABMN
d a
V axy a a d a


= ≤ = −
Nên
ABMN
V
lớn nhất là:
2 2
1
( )
12
a d a

khi
2 2
( )
2
d a
x y

= =
Câu Vb:
a. Phng trình đường tròn (C) đường kính OM.
=> Tâm là trung điểm
3
1,
4
E
 
 ÷
 
của OM và R=

5
2 4
OM
=
=> Phương trình đường tròn
2 2
3 5
2
( 1)
4 4
x y
   
− + − =
 ÷  ÷
   
b. Cách 1:
Gọi k là hệ số góc của (D) => phương trình (D) là
3
( 2)
2
y k x
= − +
 (D) cắt nửa trục dương Ox tại A
-3
2
2
A , 0
k
k
 

+
 ÷

 ÷
 ÷
 
 (D) cắt nửa trục dương Oy tại B
3
0, 2
2
B k
 
⇒ −
 ÷
 
Điều kiện:
3
2 0
2
k
− >
và k < 0

k < 0
Ta có :

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×