Tải bản đầy đủ (.doc) (3 trang)

Mat cau (hinh giai tich 12)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (64.28 KB, 3 trang )

Hình học giải tích trong không gian - Mặt cầu
Mặt cầu
Bài 1: Viết phơng trình mặt cầu biết:
a. Mặt cầu tâm I(2,2,-3) bán kính R=3.
b. Mặt câù đi qua A(3,1,-1) và tâm I(1,2,-1).
c. Mặt câù đi qua A(3,1,0), B(5,5,0) và âtm thuộc Ox.
d. Mặt câù đi qua A(0,1,0), B(1,0,0), C(0,0,1) và tâm nằm trên mặt phẳng (P): x+y+z-3=0.
e. Mặt câù đi qua bốn điểm A(1,4,0), B(-4,0,0), C(-2,-2,0) và D(1,1,6).
Bài 2: Trong không gian toạ độ Oxyz cho đờng thẳng (d) và hai mặt phẳng (P
1
) và (P
2
) có
phơng trình :



=+
=+++
01
01
:)(
zyx
zyx
d

0322:)(
1
=+++ zyxP
;
0722:)(


2
=+++ zyxP
Viết phơng trình mặt cầu có tâm thuộc (d) và tiếp xúc với hai mặt phẳng (P
1
) và (P
2
).
Bài 3: Lập phơng trình mặt cầu tâm I(2,3,-1) cắt đờng thẳng



=+
=++
0843
020345
:)(
zyx
zyx
d
tại
hai điểm A và B sao cho AB=16.
Bài 4: Lập phơng trình mặt cầu có tâm thuộc đờng thẳng



=++
=+
01454
0742
:)(

zyx
zyx
d
và tiếp
xúc với hai mặt thẳng có phơng trình
0222:)(
1
=+ zyxP
;
0422:)(
2
=++ zyxP
Bài 5: Trong không gian toạ độ Oxyz cho mặt phẳng (P): 5x-4y+z-6=0, (Q): 2x-y+z+7=0
và đờng thẳng



=++
=+
03
032
:)(
zyx
zyx
d
.
a. Viết phơng trình mặt cầu có tâm tại giao điểm I của mặt phẳng (P) và đờng thẳng (d)
sao cho mặt phẳng (Q) cắt khối cầu theo thiết diện là hình tròn có diện tích là 20.
b. Tìm toạ độ của điểm I
1

đối xứng với I qua mặt phẳng (Q).
Bài 6: Cho tứ diện ABCD với A(3,2,6); B(3,-1,0); C(0,-7,3); D(-2,1,-1).
a. CMR: Tứ diện ABCD có các cặp cạnh đối vuông góc với nhau.
b. Tính góc giữa đờng thẳng AD với mặt phẳng (ABC).
c. Thiết lập phơng trình mặt cầu ngoại tiếp tứ diện ABCD.
Bài 7: Cho điểm I(2,3,-1) và đờng thẳng



=+
=++
0843
020345
:)(
zyx
zyx
d
a. Viết phơng trình mặt phẳng (P) qua I và vuông góc với (d).
b. Viết phơng trình mặt cầu (S) có tâm I cắt (d) tại hai điểm A, B thoả mãn AB=40.
Bài 8: Cho mặt cầu tâm (S) có phơng trình : x
2
+y
2
+z
2
-2x-4y-4z=0.
a. Xác định toạ độ tâm và tính bán kính mặt cầu.
b. Gọi A, B, C lần lợt là giao điểm của mặt cầu với các trục toạ độ. Viết phơng trình mặt
phẳng (ABC).
c. Gọi H là chân đờng vuông góc hạ từ tâm mặt cầu đến (ABC). Xác định toạ độ điểm H.

Bài 9: Cho bốn điểm A(a,0,0); B(0,b,0); C(0,0,c) trong đó a, b, c>0.
a. Chứng minh tam giác ABC nhọn.
b. Xác định tâm và tính bán kính mặt cầu ngoại tiếp tứ diện OABC.
c. Tìm toạ độ điểm O
1
đối xứng với O qua mặt phẳng (ABC).
-Biên soạn: Nguyễn Cao Cờng-
1
Hình học giải tích trong không gian - Mặt cầu
Bài 10: Cho mặt phẳng (P): 16x-15y-12z+75=0.
a. Viết phơng trình mặt cầu tâm (S) có tâm là gốc toạ độ, tiếp xúc với mặt phẳng (P).
b. Tìm toạ độ tiếp điểm H của mặt phẳng (P) với mặt cầu (S).
c. Tìm điểm đối xứng của gốc toạ độ O qua mặt phẳng (P).
Bài 11: Lập phơng trình mặt cầu có tâm thuộc đờng thẳng
2
1
2
1
3
2
:)(

=

=

zyx
d

tiếp xúc với hai mặt thẳng có phơng trình

0222:)(
1
=+ zyxP
;
0422:)(
2
=++ zyxP
.
Bài 12: Cho tứ diện ABCD với A(1,0,1); B(2,1,2); C(1,-1,1); D(4,5,-5).
a. Viết phơng trình tham số của đờng thẳng qua D vuông góc mặt phẳng (ABC).
b. Thiết lập phơng trình mặt cầu ngoại tiếp tứ diện ABCD.
Bài 13: Cho điểm I(1,1,1) và đờng thẳng



=++
=+
052
092
:)(
zy
zyx
d
a. Xác định toạ độ hình chiếu vuông góc H của I lên (d).
b. Viết phơng trình mặt cầu (S) có tâm I cắt (d) tại hai điểm A, B thoả mãn AB=16.
Bài 14: Cho mặt phẳng cầu (S) x
2
+y
2
+z

2
-2x-3=0 và mặt phẳng (P): x-2=0.
a. Chứng minh mặt phẳng cắt mặt cầu theo một giao tuyến là đờng tròn.
b. Tìm tâm và bán kính đờng tròn giao tuyến.
Bài 15: Cho mặt cầu (S): x
2
+y
2
+z
2
-1=0 và mặt phẳng (P): x+y+z-1=0. Lập phơng trình mặt
cầu (S
1
) qua giao điểm của (S) và (P) trong các trờng hợp:
a. (S
1
) đi qua A(2,1,-1).
b. (S
1
) có tâm thuộc mặt phẳng (Q): x+y+2z+2=0.
c. (S
1
) tiếp xúc mặt phẳng (Q): x+1=0.
Bài 16: Cho hai mặt cầu (S): x
2
+y
2
+z
2
-2x-4z+1=0 và (S): x

2
+y
2
+z
2
-2x-3=0
a. CMR: hai mặt cầu cắt nhau.
b. Viết phơng trình mặt cầu qua giao điểm của (S) và (S) và qua điểm M(3,0).
Bài 17: Gọi T là giao tuyến của mặt cầu (S): (x-3)
2
+(y+2)
2
+(z-1)
2
=100 với mặt phẳng (P):
2x-2y-z+9=0. Xác định tâm và bán kính của T.
Bài 18: Trong không gian Oxyz cho đờng tròn (T) đợc xác định bởi hệ phơng trình:



=++
=++++
)2(0122
)1(01764
222
zyx
yxzyx
a. Tìm toạ độ tâm và bán kính của (T).
b. Lập phơng trình mặt cầu chứa (T) và có tâm thuộc mặt phẳng (Q): x+y+z+3=0.
Bài 19: Cho mặt cầu (S): x

2
+y
2
+z
2
=4 và mặt phẳng (P): x+z=2.
a. CMR: mặt phẳng (P) cắt mặt cầu (S).
b. Xác định toạ độ tâm và tính bán kính của đờng tròn (T) là giao tuyến của (P) và (S).
Bài 20: Trong không gian với hệ toạ độ trực chuẩn Oxyz cho hình lập phơng
ABCDABCD sao cho A trùng với gốc toạ độ O; B(1,0,0); D(0,1,0); A(0,0,1). M là trung
điểm của AB và N là tâm của hình vuông ADDA.
a. Viết phơng trình của mặt cầu (S) đi qua các điểm C,D,M,N.
b. Tính bán kính đờng tròn giao tuyến của (S) với mặt cầu đi qua A,B,C,D.
c. Tính thể tích thiết diện của hình lập phơng cắt bởi mặt phẳng (CMN).
Bài 21: Tìm tâm và bán kính của mặt cầu (T) cho bởi hệ phơng trình:



=++
=++
)2(01
)1(022
222
zx
xzyx
Bài 22: Cho điểm I(1,2,-2) và mặt phẳng (P): 2x+2y+z+5=0.
-Biên soạn: Nguyễn Cao Cờng-
2
Hình học giải tích trong không gian - Mặt cầu
a. Lập phơng trình mặt cầu (S) tâm I sao cho giao của (S) và (P) là đờng tròn có chu vi

bằng 8.
b. Lập phơng trình mặt phẳng chứa đờng thẳng (d) và tiếp xúc với (S).
Bài 23: Cho hình chóp SABC với S(3,1,-2); A(5,3,-1); B(2,3,-4); C(1,2,0).
a. CMR: SABC có đáy tam giác ABC là tam giác đều và ba mặt bên là các tam giác
vuông cân.
b. Tính toạ độ điểm D đối xứng với C qua đờng thẳng AB.
c. M là một điểm bất kỳ thuộc mặt cầu tâm D, bán kính
18=R
(M không thuộc mặt
phẳng (ABC)). Xét tam giác có độ dài các cạnh bằng độ dài các đoạn thẳng MA, MB
và mặt cầu. Hỏi tam giác đó có đặc điểm gì?
Bài 24: Cho mặt cầu (S): x
2
+y
2
+z
2
+2x-4y-6z+5=0. Viết phơng trình tiếp diện của (S):
a. Đi qua M(1,1,1).
b. Chứa đờng thẳng (d):



=
=
01
012
z
yx
c. Vuông góc với đờng thẳng:

2
2
1
1
2
3
:)(


=
+
=
zyx
d
Bài 25: Viết phơng trình mặt phẳng tiếp xúc với mặt cầu (S): x
2
+y
2
+z
2
-10x+2y+26z-113=0
và song song với mặt phẳng (P): 4x+3y-12z+1=0.
Bài 26: Lập phơng trình mặt phẳng tiếp xúc với mặt cầu (S): x
2
+y
2
+z
2
-10x+2y+26z-113=0
và song song với hai đờng thẳng:

2
13z
3
1y
2
5x
:)d(
1
+
=


=
+

0
8z
2
1y
3
7x
:)d(
2

=

+
=
+
Bài 27: Lập phơng trình mặt phẳng chứa đờng thẳng (d) có phơng trình:




=
=+
0z2yx
030z8y11x8
và tiếp xúc với mặt cầu (S): x
2
+y
2
+z
2
+2x-6y+4z-15=0
Bài 28: Trong không gian với hệ toạ độ Oxyz cho mặt cầu (S), đờng thẳng (d) và mặt
phẳng (Q) có phơng trình:
067z6y4x2zyx:)S(
222
=++
;



=+
=+
03yx2
08zy2x3
:)d(
;
07z2y2x5:)Q(

=++
a. Viết phơng trình tất cả các mặt phẳng chứa (d) và tiếp xúc với (C).
b. Hãy viết phơng trình hình chiếu vuông góc của (d) lên (Q).
Bài 29: Cho mặt cầu (S): x
2
+y
2
+z
2
+2x-y-6z+1=0. Viết phơng trình tiếp diện của (S):
d. Đi qua M(-1,0,0).
e. Chứa đờng thẳng (d):



=+
=
01z2x
01yx
f. Vuông góc với đờng thẳng:
3
2z
1
1y
2
x
:)d(
+
=


=
-Biên soạn: Nguyễn Cao Cờng-
3

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×