Tải bản đầy đủ (.doc) (21 trang)

Chuyên đề nguyên hàm và tích phân

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (311.82 KB, 21 trang )

I. Tìm nguyên hàm bằng định nghĩa và các tính chất
1/ Tìm nguyên hàm của các hàm số.



x


Cx
xx
++−










x
x
+

C
x
x
+−









x
x


x






x
x


C
x
x
x
++−








xxx
++

C
xxx
+++















xx


Cxx
+−
 




x
x



 
Cxxx
++−




x
x


Cxx
+−








x








Cxx
++








 

xx



 

xx
x




 

Cx
+−





Cxx
+−−



!

!


Cee
xx
+−




!






x
e
x

!







C
a
a
xx
++





!


Ce
x
+

+



2/ Tìm hàm số f(x) biết rằng
"#$


"

#$%




+−
x
x

"
xx

#$





−−
xxx

" 



+
x
#$






−++
x
x
x

"



#$ 




6"
&&'&


=−==
fff
x
b





++
x
x
1)







+ dx
x
x
2
3
1
2)

−−
dx

x
xx
4
45
134

3)







+ dx
x
1
x
3
4)
( )

+ dxxx
3
3
2
5)
( )
( )


++ dx2x-xx 1
3
6)







+ dx
x
x
3
1
7)







+ dx
x
x
4
2
1
8)


+
dx
x
xx
2
4
9)
( )

+ dxbax
2
3
10)

++

dx
x
xx
4
3
4
2

11)
( ) ( )

++ dxbxaxx
12)

dxe2
xx

13)
( )

− dxe
xx
2
2
14)

++ dxee
x-x
2
15)

−+ dxee
x-x
2
16)

+
dx
e
e
x
5x-2
1
17)


+
dx
x
1-x
1
18)

dxcos2x-1
19)

+
dx
cosx1
x4sin
2
II. MỘT SỐ PHƯƠNG PHÁP TÌM NGUYÊN HÀM
1.Phương pháp đổi biến số.
()*+

dxxuxuf ',-
./01*234
 34
dxxudt '
=⇒
 +
∫ ∫
=
dttfdxxuxuf ',-
BÀI TẬP

Tìm nguyên hàm của các hàm số sau:



dxx 
 



 x
dx
 
dxx







x
dx


+
xdxx


 


+
dxxx




xdxx 


+
 

+
dx
x
x




+
dx
x
x








+

 xx
dx
 
dx
x
x



 

+
dxex
x 




xdxx

 

dx
x
x




 

gxdx


x
tgxdx




x
dx



x
dx



tgxdx


dx
x
e
x





x
x
e
dxe


dx
x
e
tgx





dxx 





 x
dx



dxxx 




+

 x
dx





 x
dxx


++


xx
dx


xdxx



dxxx 





+

x
e
dx

dxxx 


+

   
  5    5   5

2

xdx

x
+ − +
+
∫ ∫ ∫


 
 5
     
4 3

2 5 4 2 2
xdx x dx x dx (6x-5)dx cosxdx
sin cos
x x x 3x sin x+ + + − +
∫ ∫ ∫ ∫ ∫ ∫


5

  0
ln dx

cos +
∫ ∫

 
! ! 5sin( )


 
2
(2x-3)dx
x − +



2
2 3
xdx x dx


1 x x+ +
∫ ∫
( )
 
   
6

05 05 05 0   5 5
!  !   
5 ! 5
  
sin
e dx e dx sin2x
cot cot ( )
cos
lnx
dx
cos
ln
+
+ + +
∫ ∫ ∫ ∫ ∫ ∫ ∫
∫ ∫ ∫
 
  
! 5 !  5

∫ ∫
1)
( )


+
dxx
4
13
2)

+−

dx
xx
x
24
42
2

3)

xlnx
dx

4)

−+
dx
xx
x
1
2
2

5)

+ dx1xx
6)
( )

+ dxe
3
x
1
7)

+
dx
x1
x
2
8)

+−
+
dx
xx
4x
2
12
9)

+−
dx

xx
x
2
3
12
10)


+
dx
x
1x
2
11)
( )

+
3
1x
xdx
12)

+
dxxx
2
1
13)

xdxcos
4

14)

xxcossin
dx
22
15)

dx1-2xx
16)
( )


2
4
3
4x
dxx
17)
( )

+
dxxx
2
3
3
12
18)

xdxcosxsin
5

19)

xdxtg
3
20)

dxe
x
1
x
21)

dx
xcos
e
tgx
2
22)
dx
x
x
ln
x
1


+

1
1

1
2
23)

+ dxxx
3
23
1
24)
( )

xlnln.xlnx
dx
25)

dx1-xx

2. Phương pháp lấy nguyên hàm từng phần.
7844&#$**$69:2;*$6<=><+
∫ ∫
−=
dxxuxvxvxudxxvxu ''
?@
∫ ∫
−=
vduuvudv
#A544"5&5##"5
Tìm nguyên hàm của các hàm số sau:



xdxx 


xdxx


+
xdxx 



++
xdxxx 



xdxx 


xdxx 


dxex
x



xdx



xdxx 

dxx





x
xdx


dxe
x


dx
x
x




xdxxtg



dxx



+
dxx 



xdxe
x



dxex
x




+
dxxx 



xdx
x



xdxx 0


+

dxxx 


+
dx
x
x




xdxx 

1)
( )

+ xdxcosx 12
2)

dxex
x2
3)

xdxln
4)

xdxsine
x
5)
( )


dxxlncos
6)

dxxe
x
7)







− dx
xln
xln
11
2
8)

xdxsine
x 22
9)









+
dx
x
x
lnx
1
1

NGUYÊN HÀM HÀM HỮU TỶ
Tìm các nguyên hàm sau:
Bµi1: TÝnh c¸c nguyªn hµm sau ®©y:
1)

+
dx
x
x
1
2
2
2)

++ 1xx
dx
2
3)

++

dx
xx
x
2
1
4)


2
ax
dx
2
5)

+ 23xx
dx
2
6)

+
++
dx
xx
xx
2
2
23
1
7)




+
0)(a dx
ax
x
2 2
1
8)

1
3
x
dx

9)


+
dx
x
1x
3
1
10)

++
34
24
xx

dx

11)
( )

+
dx
1-xx
1x
2
12)

+ 3-2xx
dx
2
13)



dx
x4x
x
3
3
1
14)

+ 2xx
xdx
24

3
15)
( )

+
dx
1x
x
4
7
2
Bài2: 1) Cho hàm số y =
23
333
3
2
+
++
xx
xx
a) Xác định các hằng số A, B, C để:
y =
( )
( )
21
1
2
+
+


+

x
C
x
B
x
A
b) Tìm họ nguyên hàm của hàm y
Bài3: a) Xác định các hằng số A, B sao cho
( ) ( ) ( )
233
111
13
+
+
+
=
+
+
x
B
x
A
x
x
b) Dựa vào kết quả trên để tìm họ nguyên hàm của hàm số : f(x) =
( )
3
1

13
+
+
x
x
1.
( )
( )


2
2
1 2x dx
x
+
+

2.
( )
( )


2
1 x dx
x
+
+

3.
2

dx
1 9x+

4.

2
dx
2x +

5. 6.
NGUYấN HM HM LNG GIC
Tỡm cỏc nguyờn hm sau:
1)

xcos.xsin
dx
2)

xdxsin
2
3)

cosx
dx
4)

dx
2
x
cos.xcos

5)

++ 52cosx4sinx
dx
6)

+
xcos-2sinxcosxxsin
dx
22
7)

.sin4xdxcosx.cos2x
8)

dxxtg
5
9)

xcos
dx
6
10)

xsin
dx
6
11)

dx

xx.sincos
cos2x
22
12)

xcos.xsin
dx
22
13)

xdxsin2x.cos3
14)

dxxcos
6
15)

xdxsin.xcos 8
3
16)

xdxcos
2
17)

xdxsin
3
18)

xdxtg

2
19)

x.cosxdxsin
2
20)

dx
xcos
tgx
3
21)

+
+
xcosxsin
xcos
3
14
2
22.

 
5
cos
1 cos2x
+
+

23.

 
5
 
cos2x
cos sin

24.

0 5

25.

0 5cot

26.

 5cos sin

6.
NGUYÊN HÀM HÀM VÔ TỶ
Tìm các nguyên hàm sau:
1)


2
4 x
dx
2)

−+

11 xx
dx
3)
( )

+ 2xx
dx
4)

x-1x
dx
5)

+
+
1x
dx
1-x
1x
3
6)
( )

+−+
++
dx
xx
1x
11
2

2
7)

+++
3
xx
dx
11
8)

+++ 11 xx
dx
9)

− dxx
2
4

10)

−− dxxx
2
4
11)

−+− 143
2
xx
dx
12.




 
5



13.
2
dx
3-3x

14.

 
dx


15.

 
dx


16.

 
dx



TÍCH PHÂN
I. TÍNH TÍCH PHÂN BẰNG CÁCH SỬ DỤNG TÍNH CHẤT VÀ NGUYÊN HÀM CƠ BẢN:




 x x dx+ +

2.



 
 
e
x x dx
x x
+ + +

3.


x dx−

4.


x dx+


5.


  x cosx x dx
π
π
+ +

6.


 
x
e x dx+


7.



 x x x dx+

8.


  x x x dx+ − +

9.




  x cosx dx
x
π
π
+ +


10.



 
x
e x dx+ +

11.




 x x x x dx+ +

12.


  x x x dx− + +


12.




  5( ).

+

13.

2
2
-1
x.dx
x +

14.

!

   
5


− −

15.
 
5
2
dx

x 2+ + −

16.



  5
  
( ).
ln
+
+

17.




 5

cos .
sin
π
π

18.



0 5


.
cos
π

19.

 
 

! !
! !
dx



+

20.


 

! 5
! !
.

+

21.




5
 +

22.

 

5
! !
ln
.

+

22.


5
 sin
π
+

24.


++




 dxxx
25.

−−






 dxxx
26.





 dxxx

27.






 dxx
28.

dx
xx







+




29.







dx
x
xx

30.

e
e

x
dx


31.



dxx
32.
dx
x
xx
e

−+




33.
dx
x
x













 



II. PHƯƠNG PHÁP ĐẶT ẨN PHỤ:
 1.

 

 xcos xdx
π
π

2.

 

 xcos xdx
π
π

3.




 
x
dx
cosx
π
+


3.


tgxdx
π

4.


 gxdx
π
π

5.


  xcosxdx
π
+

6.




x x dx+

7.



x x dx−

8.

 

x x dx+


9.





x
dx
x +




 

x x dx−







dx
x x +







dx
x+

 




 
dx
x x


+ +

 





dx
x +




 


  
dx
x+





x
e cosxdx
π
π


 



cosx
e xdx
π
π


18.




x
e xdx
+

19.

 

 xcos xdx
π
π

20.




x
e cosxdx
π
π


21.



cosx
e xdx
π
π

22.




x
e xdx
+

 

 


 xcos xdx
π
π




 

 xcos xdx
π
π





 
x
dx
cosx
π
+

 


tgxdx
π






 gxdx
π
π

 


  xcosxdx
π
+





x x dx+

30.



x x dx−

31.

 


x x dx+

32.





x
dx
x +


33.

 

x x dx−

34.





dx
x x +

35.


 
e
x
dx
x
+

36.

 
e
x
dx
x

37.

  
e
x x
dx
x
+

38.
 

e
x

e
dx
x
+


39.


 

e
e
x
dx
x x
+

40.



  
e
e
dx
cos x+

41.



 
x
dx
x+ −

42.


 
x
dx
x +

43.


x x dx+

44.




dx
x x+ +


45.





dx
x x+ −

46.


x
dx
x
+

 

 
e
x
dx
x
+


47.

 
e
x
dx

x

48.

  
e
x x
dx
x
+

49.
 

e
x
e
dx
x
+


50.


 

e
e
x

dx
x x
+

51.



  
e
e
dx
cos x+

52.

 

+

x x dx
53.
( )



  +

x xdx
π

54.



 x dx−

55.



 x dx−

56.




dx
x+

57.
dxe
x


+



58.





dxe
x

1
3
0
x
dx
(2x 1)+


1
0
x
dx
2x 1+

 
1
0
x 1 xdx−



1
2

0
4x 11
dx
x 5x 6
+
+ +


1
2
0
2x 5
dx
x 4x 4

− +

 
3
3
2
0
x
dx
x 2x 1+ +



6
6 6

0
(sin x cos x)dx
π
+


3
2
0
4sin x
dx
1 cos x
π
+

 
4
2
0
1 sin 2x
dx
cos x
π
+



2
4
0

cos 2xdx
π


2
6
1 sin 2x cos2x
dx
sin x cos x
π
π
+ +
+


1
x
0
1
dx
e 1+



dxxx 






π


+




π
dx
x
x
 

+




π
dx
x
x









π
dx
x
x
 


−+
+





 dx
xx
x
 

++




xx
dx


2

3 2
0
cos xsin xdx
π

 
2
5
0
cos xdx
π


4
2
0
sin 4x
dx
1 cos x
π
+


1
3 2
0
x 1 x dx−


2

2 3
0
sin 2x(1 sin x) dx
π
+

 
4
4
0
1
dx
cos x
π



e
1
1 ln x
dx
x
+

 
4
0
1
dx
cos x

π


e
2
1
1 ln x
dx
x
+



1
5 3 6
0
x (1 x ) dx−

 
6
2
0
cos x
dx
6 5sin x sin x
π
− +


3

4
0
tg x
dx
cos 2x


4
0
cos sin
3 sin2
x x
dx
x
π
+
+



+





π
dx
xx
x

 

−+




xx
ee
dx



+





π
dx
x
x
 





π

π
dx
x
tgx
 






π
dxxtg



+





π
π
dx
x
xx
 

+

+




π
dx
x
xx
 

+




π
dx
x
xx



+




π
xdxxe

x
 

−+



dx
x
x
 

+
e
dx
x
xx





+






π

dx
x
x

1
2
0
1 x dx−

 
1
2
0
1
dx
1 x+



1
2
0
1
dx
4 x−


1
2
0

1
dx
x x 1− +


1
4 2
0
x
dx
x x 1+ +



×