Tích phân Trần Só Tùng
Trang 2
NGUYÊN HÀM VÀ TÍCH PHÂN
1. Đònh nghóa:
Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên khoảng (a ; b) nếu mọi x
thuộc (a ; b), ta có: F’(x) = f(x).
Nếu thay cho khoảng (a ; b) là đoạn [a ; b] thì phải có thêm:
F'(a)f(x)vàF'(b)f(b)
+-
==
2. Đònh lý:
Nếu F(x) là một nguyên hàm của hàm số f(x) trên khoảng (a ; b) thì :
a/ Với mọi hằng số C, F(x) + C cũng là một nguyên hàm của hàm số f(x) trên
khoảng đó.
b/ Ngược lại, mọi nguyên hàm của hàm số f(x) trên khoảng (a ; b) đều có thể
viết dưới dạng: F(x) + C với C là một hằng số.
Người ta ký hiệu họ tất cả các nguyên hàm của hàm số f(x) là
f(x)dx.
ò
Do
đó viết:
f(x)dxF(x)C=+
ò
Bổ đề: Nếu F¢(x) = 0 trên khoảng (a ; b) thì F(x) không đổi trên khoảng đó.
3. Các tính chất của nguyên hàm:
·
( )
f(x)dx'f(x)=
ò
·
af(x)dxaf(x)dx(a0)=¹
òò
·
[ ]
f(x)g(x)dxf(x)dxg(x)dx+=+
òòò
·
[ ] [ ]
f(t)dtF(t)Cfu(x)u'(x)dxFu(x)CF(u)C(uu(x))=+Þ=+=+=
òò
4. Sự tồn tại nguyên hàm:
· Đònh lý: Mọi hàm số f(x) liên tục trên đoạn [a ; b] đều có nguyên hàm trên đoạn đó.
§Bài 1: NGUYÊN HÀM
Trần Só Tùng Tích phân
Trang 3
BẢNG CÁC NGUYÊN HÀM
Nguyên hàm của các hàm số sơ cấp
thường gặp
Nguyên hàm của các hàm số hợp
(dưới đây u = u(x))
dxxC=+
ò
duuC=+
ò
1
x
xdxC(1)
1
a+
a
=+a¹-
a+
ò
1
u
uduC(1)
1
a+
a
=+a¹-
a+
ò
dx
lnxC(x0)
x
=+¹
ò
du
lnuC(uu(x)0)
u
=+=¹
ò
xx
edxeC=+
ò
uu
edueC=+
ò
x
x
a
adxC(0a1)
lna
=+<¹
ò
u
u
a
aduC(0a1)
lna
=+<¹
ò
cosxdxsinxC=+
ò
cosudusinuC=+
ò
sinxdxcosxC=-+
ò
sinuducosuC=-+
ò
2
2
dx
(1tgx)dxtgxC
cosx
=+=+
òò
2
2
du
(1tgu)dutguC
cosu
=+=+
òò
2
2
dx
(1cotgx)dxcotgxC
sinx
=+=-+
òò
2
2
du
(1cotgu)ducotguC
sinu
=+=-+
òò
dx
xC(x0)
2x
=+>
ò
du
uC(u0)
2u
=+>
ò
1
cos(axb)dxsin(axb)C(a0)
a
+=++¹
ò
1
sin(axb)dxcos(axb)C(a0)
a
+=-++¹
ò
dx1
lnaxbC
axba
=++
+
ò
axbaxb
1
edxeC(a0)
a
++
=+¹
ò
dx2
axbC(a0)
a
axb
=++¹
+
ò
Tích phân Trần Só Tùng
Trang 4
Vấn đề 1: XÁC ĐỊNH NGUYÊN HÀM BẰNG ĐỊNH NGHĨA
Bài toán 1: CMR F(x) là một nguyên hàm của hàm số f(x) trên (a ; b)
PHƯƠNG PHÁP CHUNG
Ta thực hiện theo các bước sau:
+ Bước 1: Xác đònh F’(x) trên (a ; b)
+ Bước 2: Chứng tỏ rằng F'(x)f(x)vớix(a;b)="Ỵ
Chú ý: Nếu thay (a ; b) bằng [a ; b] thì phải thực hiện chi tiết hơn, như sau:
+ Bước 1: Xác đònh F’(x) trên (a ; b)
Xác đònh F’(a
+
)
Xác đònh F’(b
–
)
+ Bước 2: Chứng tỏ rằng
F'(x)f(x),x(a;b)
F'(a)f(a)
F'(b)f(b)
+
-
="Ỵ
ì
ï
=
í
ï
=
ỵ
Ví dụ 1: CMR hàm số:
2
F(x)ln(xxa)=++ với a > 0
là một nguyên hàm của hàm số
2
1
f(x)
xa
=
+
trên R.
Giải:
Ta có:
2
2
2
22
2x
1
(xxa)'
2xa
F'(x)[ln(xxa)]'
xxaxxa
+
++
+
=++==
++++
2
222
xax1
f(x)
xa(xxa)xa
++
===
++++
Vậy F(x) với a > 0 là một nguyên hàm của hàm số f(x) trên R.
Ví dụ 2: CMR hàm số:
x
2
ekhix0
F(x)
xx1khix0
ì
³
ï
=
í
++<
ï
ỵ
Là một nguyên hàm của hàm số
x
ekhix0
f(x)
2x1khix0
ì
³
=
í
+<
ỵ
trên R.
Giải:
Để tính đạo hàm của hàm số F(x) ta đi xét hai trường hợp:
a/ Với
x0¹
, ta có:
x
ekhix0
F'(x)
2x1khix0
ì
>
=
í
+<
ỵ
b/ Với x = 0, ta có:
Trần Só Tùng Tích phân
Trang 5
· Đạo hàm bên trái của hàm số tại điểm x
0
= 0.
20
x0x0
F(x)F(0)xx1e
F'(0)limlim1.
x0x
--
-
®®
-++-
===
-
· Đạo hàm bên phải của hàm số tại điểm x
0
= 0.
x0
x0x0
F(x)F(0)ee
F'(0)limlim1.
x0x
++
+
®®
--
===
-
Nhận xét rằng F'(0)F'(0)1F'(0)1.
-+
==Þ=
Tóm lại:
x
ekhix0
F'(x)f(x)
2x1khix0
ì
³
==
í
+<
ỵ
Vậy F(x) là một nguyên hàm của hàm số f(x) trên R.
Bài toán 2: Xác đònh các giá trò của tham số để F(x) là một nguyên hàm của hàm số f(x)
trên (a ; b).
PHƯƠNG PHÁP CHUNG
Ta thực hiện theo các bước sau:
+ Bước 1: Xác đònh F’(x) trên (a ; b)
+ Bước 2: Để F(x) là một nguyên hàm của hàm số f(x) trên (a ; b), điều kiện là:
F'(x)f(x)vớix(a;b)="Ỵ
Dùng đồng nhất của hàm đa thức Þ giá trò tham số.
Chú ý: Nếu thay (a ; b) bằng [a ; b] thì phải thực hiện chi tiết hơn, như sau:
+ Bước 1: Xác đònh F’(x) trên (a ; b)
Xác đònh F’(a
+
)
Xác đònh F’(b
–
)
+ Bước 2: Để F(x) là một nguyên hàm của hàm số f(x) trên (a ; b), điều kiện là:
F'(x)f(x),x(a;b)
F'(a)f(a)
F'(b)f(b)
+
-
="Ỵ
ì
ï
=
í
ï
=
ỵ
Þ giá trò của tham số.
Bài toán 3: Tìm hằng số tích phân
PHƯƠNG PHÁP CHUNG
· Dùng công thức đã học, tìm nguyên hàm: F(x) = G(x) + C
· Dựa vào đề bài đã cho để tìm hằng số C.
Thay giá trò C vào (*), ta có nguyên hàm cần tìm.
Tích phân Trần Só Tùng
Trang 6
Ví dụ 3: Xác đònh a , b để hàm số:
2
xkhix1
F(x)
axbkhix1
ì
£
=
í
+>
ỵ
là một nguyên hàm của hàm số:
2xkhix1
f(x)
2khix1
£
ì
=
í
>
ỵ
trên R.
Giải:
Để tính đạo hàm của hàm số F(x) ta đi xét hai trường hợp:
a/ Với x1¹ , ta có:
2xkhix1
F'(x)
2khix1
<
ì
=
í
>
ỵ
b/ Với x = 1, ta có:
Để hàm số F(x) có đạo hàm tại điểm x = 1, trước hết F(x) phải liên tục tại x = 1, do
đó :
x1x1
limF(x)limF(x)f(1)ab1b1a(1)
-+
®®
==Û+=Û=-
· Đạo hàm bên trái của hàm số y = F(x) tại điểm x = 1.
2
x1
x1
f(x)F(1)x1
F'(1)=limlim2.
x1x1
-
®
®
--
==
--
· Đạo hàm bên phải của hàm số y = f(x) tại điểm x
0
= 0.
x1x1x1
F(x)F(1)axb1ax1a1
F'(1)limlimlima.
x1x1x1
+++
+
®®®
-+-+--
====
---
Hàm số y = F(x) có đạo hàm tại điểm x = 1 F'(1)F'(1)a2.
-+
Û=Û= (2)
Thay (2) vào (1), ta được b = –1.
Vậy hàm số y = F(x) có đạo hàm tại điểm x = 1, nếu và chỉ nếu a = 2, b = –1.
Khi đó: F’(1) = 2 = f(1)
Tóm lại với a = 2, b = 1 thì F(x) là một nguyên hàm của hàm số f(x).
Ví dụ 4: Xác đònh a , b , c để hàm số:
-
=++
22x
F(x)(axbxc)e là một nguyên hàm của
22x
F(x)(2x8x7)e
-
=--+ trên R.
Giải:
Ta có:
2x22x
F'(x)(2axb)e2(axbxc)e
--
=+-++
22x
2ax2(ab)xb2ce
-
éù
=-+-+-
ëû
Do đó F(x) là một nguyên hàm của f(x) trên R
F'(x)f(x),xRÛ="Ỵ
Û-+-+-=-+-"Ỵ
22
2ax2(ab)xb2c2x8x7,xR
a1a1
ab4b3
b2c7c2
==
ìì
ïï
Û-=Û=-
íí
ïï
-=-=
ỵỵ
Vậy
-
=-+
22x
F(x)(x3x2)e .