1
NHỮNG BÀI TOÁN
GIẢI TÍCH CHỌN LỌC
2
Nhà xuất bản mong bạn đọc
đóng góp ý kiến, phê bình
3
HỌC VIỆN KỸ THUẬT QUÂN SỰ
KHOA CÔNG NGHỆ THÔNG TIN
NHỮNG BÀI TOÁN
GIẢI TÍCH CHỌN LỌC
NHÀ XUẤT BẢN QUÂN ĐỘI NHÂN DÂN
HÀ NỘI - 2005
Dùng cho các Nhà trường Quân đội
4
Biên soạn
TS. TÔ VĂN BAN
5
MỤC LỤC
Trang
Lời giới thiệu
Một số ký hiệu sử dụng trong sách
9
Chương I.
Số thực, giới hạn dãy số, chuỗi số
11
§1.0 Tóm tắt lý thuyết 11
§1.1. Số thực 17
§1.2. Tìm giới hạn theo định nghĩa 24
§1.3. Các phép toán với giới hạn - Thay tương đương 28
§1.4. Dãy đơn điệu 31
§1.5. Định lý kẹp 40
§1.6. Tiêu chuẩn Cauchy 45
§1.7. Tìm biểu thức của số
hạng tổng quát 47
§1.8. Thông qua giới hạn hàm số 53
§1.9. Phương pháp tổng tích phân 54
§1.10. Tốc độ phát triển 61
§1.11. Định lí Stolz 66
§1.12. Dãy truy hồi tuyến tính với hệ số hằng số; §1.12a. Cấp 1 70
§1.12b. Cấp 2 71
§1.13. Dãy truy hồi cấp 1 dạng u
n+1
= f(u
n
,n
); 79
§1.13a. Trường hợp dễ tìm số hạng tổng quát 79
§1.13b. Trường hợp dễ suy được tính đơn điệu 85
§1.13c. Trường hợp ánh xạ co 90
§1.13d. Khảo sát độ lệch 93
§1.13e. Trường hợp tổng quát 96
§1.13f. Lập dãy mới - Dãy qua dãy 105
§1.14. Dãy truy hồi cấp 2 dạng u
n+2
= f(u
n+1
, u
n
, n) 110
§1.15. Nghiệm các phương trình f
n
(x) = 0 114
§1.16. Sơ lược về chuỗi số 119
Chương II. Hàm số - Giới hạn - Liên tục
125
§2.0. Tóm tắt lý thuyết 125
§2.1. Giới hạn - liên tục theo ngôn ngữ "ε - δ", theo ngôn ngữ dãy
130
§2.2. Giới hạn - liên tục trái, phải 132
§2.3. Tìm giới hạn - Thay tương đương - Quy tắc L' Hôpital 134
§2.4. Giới hạn - liên tục của hàm đơn điệu 137
§2.5. Các phép toán với các hàm có giới hạn, với các hàm liên tục 141
§2.6. Hàm liên tục trên đoạn đóng -
Định lý giá trị trung gian 141
§2.7. Liên tục đều 149
§2.8. Liên tục với hàm ngược 153
6
§2.9. Liên tục và tuần hoàn 155
§2.10. Phương trình hàm không sử dụng tính liên tục, khả vi 167
§2.11. Phương trình hàm với tính liên tục 167
Chương III. Đạo hàm - Vi phân
181
§3.0. Tóm tắt lý thuyết 181
§3.1. Tính đạo hàm của hàm số - Đạo hàm tại một điểm 186
§3.2. Sự khả vi 190
§3.3. Tính đạo hàm cấp cao 192
§3.4. Ứng dụng đạo hàm; §3.4a. Tính đơn điệu của hàm số 196
§3.4b. Cực trị 198
§3.4c. Khảo sát đường cong dưới dạng hiện, tham số và trong toạ
độ cực. 202
§3.4d. Bất đẳng thức - Hàm số lồi 213
§3.5. Định lý về giá trị trung bình; §3.5a. Định lý Rolle 219
§3.5b. Định lý Lagrange 229
§3.6. Khai triển Taylor; §3.6a. Phần dư 236
§3.6b. Chọn điểm khai triển - Điểm áp dụng 238
§3.6c. Cấp khai triển 242
§3.6d. Khai triển thành chuỗi Taylor 244
§3.7. Phương trình hàm có sử dụng đạo hàm 246
Chương IV. Tích phân
255
§4.0. Tóm tắt lý thuyết 255
§4.1. Tích phân, đạo hàm theo cận trên 262
§4.2. Đổi biến số 267
§4.3. Tích phân từng phần 278
§4.4. Giá trị trung bình tích phân 284
§4.5. Bất
đẳng thức tích phân; §4.5a. Đánh giá hàm dưới dấu tính phân 285
§4.5b. Tách miền lấy tích phân thành các đoạn thích hợp 297
§4.5c. Tích phân từng phần để tăng bậc của hàm dưới dấu tích phân 309
§4.5d. Bất đẳng thức Cauchy - Bunhiacopski - Schwartz 312
§4.5e. Tính dương của tích phân 315
§4.6. Số gia hàm số qua tích phân - Khảo sát nguyên hàm 317
Chương V. Sơ lược về hàm nhiều biến
325
§5.0. Tóm tắt lí thuyết 325
§5.1. Giới hạn 331
§5.2. Sự liên tục 333
§5.3. Đạo hàm riêng 339
§5.4. Hàm ẩn 352
§5.5. Cực trị 355
Tài liệ
u tham khảo
365
7
7
LỜI GIỚI THIỆU
Nhằm góp phần giúp cho sinh viên với một nỗ lực nhất định tiệm cận được tới
một số phương pháp luận của toán học, chúng tôi xin ra mắt bạn đọc cuốn
"Những bài toán giải tích chọn lọc". Sách là bộ sưu tập những bài tập hay, khá
khó, điển hình và rất đa dạng từ các cuộc thi Olympic sinh viên trong nước và
quốc tế, từ các cuốn sách của các tác giả nổi tiếng trong và ngoài nướ
c, các tạp
chí Americal Mathematical Monthly, Putnam Problem, Delta... với những lời giải
đôi khi được cải tiến cùng một số bài tập khác của chúng tôi.
Để khắc phục tình trạng thiếu thời gian nghiêm trọng của sinh viên, chúng tôi
đã dẫn ra toàn bộ các lời giải - dẫu rằng chúng tôi không bao giờ khuyên độc giả
chỉ đọc những lời giải này. Chúng tôi đã cố gắng trình bày theo ý chủ đạo xuyên
suốt: Sách không chỉ giúp độc giả biết được lời giả
i của bài toán, mà hơn cả, làm
thế nào để giải được nó, những suy luận nào tỏ ra "có lý"..., các kết luận, nhận
xét từ bài tập đưa ra, những thủ pháp chủ đạo thường dùng để giải bài toán liên
quan. Để tiện theo dõi, ở đầu mỗi chương chúng tôi đưa vào phần tóm tắt lý
thuyết và ở đầu mỗi mục nhỏ chúng tôi đưa ra những cách giải chính.
Nội dung được phân làm năm chương. Ở chương mộ
t chúng ta có thể tìm thấy
những bài toán liên quan đến số thực và chuỗi số cũng như nhiều bài toán liên
quan đến dãy số. Chương hai gồm những bài liên quan đến sự liên tục của hàm
số. Chương ba chứa đựng những kiến thức về đạo hàm cũng như các ứng dụng
của nó. Chương bốn dành cho tích phân xác định: các phương pháp lấy tích phân,
các bất đẳng thức tích phân, các ứng dụng...Chúng ta sẽ thấy một số
kết quả về
hàm nhiều biến như giới hạn, liên tục, hàm ẩn, cực trị... ở chương năm.
Hy vọng rằng sách là tài liệu tham khảo tốt cho sinh viên năm đầu ít nhiều có
năng khiếu về toán, cho sinh viên các lớp tài năng, cũng như là tài liệu tốt phục
vụ các kỳ thi Olympic toán sinh viên. Sách cũng là tài liệu cho học sinh và giáo
viên luyện học sinh giỏi ở các trường phổ thông trung học.
Tác giả chân thành cảm
ơn Nhà xuất bản, Ban chủ nhiệm Khoa CNTT - Học
viện KTQS, Ban Chủ nhiệm Bộ môn Toán Khoa CNTT đã đề ra chủ trương xuất
bản và tạo những điều kiện tốt nhất dể tài liệu này có thể nhanh chóng hoàn
thành. Đặc biệt tác giả bày tỏ lòng qúy trọng với PGS TS Nguyễn Xuân Viên, TS
Nguyễn Thanh Hà, TS Nguyễn Bá Long, CN Tạ Ngọc Ánh, CN Tô Văn Đinh,
CN Nguyễn Hồng Nam, CN Phạm Văn Khánh, CN Nguyễn Quốc Tuấn đã đọc
toàn bộ hoặc từng phần bản thảo cũng như bản đánh máy.
Tác giả
8
Trang chẵn bỏ
9
MỘT SỐ KÝ HIỆU DÙNG TRONG SÁCH
•
R
,
+
R
,
*
+
R
tập các số thực, tập các số thực không âm, tập các số thực dương.
•
N
,
*
N
tập các số nguyên không âm, tập các số nguyên dương.
•
Z
tập các số nguyên {0; ± 1; ± 2;...}.
•
Q
tập các số hữu tỉ.
•
C
tập các số phức.
•
(a; b) khoảng mở
{
x
∈
R
, a < x < b
}
.
•
[a; b) khoảng nửa mở
{
x
∈
R
, a
≤
x < b
}
.
• [a; b] đoạn { x ∈
R
, a ≤ x ≤ b}.
•[x], E(x) phần nguyên của số thực x.
•{x} phần phân (lẻ) của số thực x {x} = x - [x] ;
tập hợp gồm 1 phần tử x
•
n ! giai thừa n ! = 1. 2. 3... n.
•
n!! giai thừa kép (2n-1)!! = 1. 3. 5... (2n-1);
(2n)!! = 2. 4. 6... (2n).
•
k
n
C
số tổ hợp chập k của n phần tử, chính là hệ số của khai triển Newton:
()
!kn!k
!n
C
k
n
−
=
0 ≤ k ≤ n, k,
n ∈
N
.
• Max A(MinA) phần tử lớn nhất (nhỏ nhất) của tập A.
• Sup A (Inf A) cận trên đúng (cận dưới đúng) của tập A.
•
x
giá trị tuyệt đối của số thực x, modul của số phức x.
•
Re(z), Im(z) phần thực, phần ảo của số phức z.
•
f(x)- hàm số; - giá trị của hàm f tại điểm x.
•
()
ax
xf
=
- giá trị của hàm f tại điểm x = a.
•
BA:f →
- Ánh xạ từ A vào B; - hàm số với tập xác định là A, tập giá trị
chứa trong B.
•
∞→n
n
xlim
giới hạn của dãy số {x
n
}.
•
∞→
=
n
n
kxlim
hay x
n
→
k (n
→
∞
) dãy x
n
dần đến k khi n dần đến
∞
.
•
nn
xx lim,lim
giới hạn trên, giới hạn dưới của dãy
{
x
n
}
.
10
•
()
ax
xf
→
lim
giới hạn của hàm số f(x) khi x dẫn đến a.
•
() ()()
−
→
+
→ axax
xfxf lim,lim
giới hạn của hàm số f(x) khi x dần đến a về bên phải (về
bên trái).
•
()
()
dx
xdf
xf ;'
đạo hàm bậc nhất của hàm f(x).
•
( ) ( )
( )
00
xfxf
''
−+
đạo hàm phía phải (trái) của hàm f(x) tại x
0
.
•
()
()
()
n
n
n
dx
xfd
xf ;
đạo hàm bậc n của hàm f(x).
•
...f,
y
f
,f,
x
f
,
y
,
x
∂
∂
∂
∂
các đạo hàm riêng bậc một của hàm nhiều biến.
•
,...,,
''
yx
f
f
x
f
2
xx
2
2
∂∂
∂
∂
∂
các đạo hàm riêng bậc hai của hàm nhiều biến.
•
fd,df
2
... vi phân cấp một, cấp hai,... của hàm f(x).
•
∞
.,.,.,.
21
chuẩn, chuẩn tổng các giá trị tuyệt đối, chuẩn Euclide,
chuẩn Max trên
n
R
.
• B(a,r) hình cầu mở tâm a, bán kính r.
() ()
a
f
;a
f
υ∂
∂
υ∂
∂
→
đạo hàm theo hướng véc tơ
2
R
∈υ
→
•
()
dxxf
a
∫
∞
tích phân suy rộng loại 1 của hàm f(x) trên
[
)
∞+;a
.
•
() ( )
)(xgoxf =
f(x) là vô cùng bé bậc cao hơn so với vô cùng bé g(x).
•
() ( )
)(
xgOxf
=
f(x) là vô cùng bé cùng bậc so với vô cùng bé g(x).
•
()
xf
∼
)x(g
()
xf
là vô cùng bé tương đương với vô cùng bé g(x).
11
Chương I
GIỚI HẠN DÃY SỐ
§1.0. TÓM TẮT LÝ THUYẾT
SỐ THỰC
* Ta nói x ∈
R
là một cận trên của tập A ⊂
R
nếu ∀a ∈ A, a ≤ x.
Ta nói y ∈
R
là một cận dưới của tập A ⊂
R
nếu ∀a ∈ A, y ≤ a.
Ta nói x là phần tử lớn nhất (hay giá trị lớn nhất) hoặc cận trên đúng của tập A
⊂
R
nếu: x ∈ A, a ≤ x ∀a ∈ A.
Kí hiệu giá trị lớn nhất của tập A là Max (A). Tương tự những điều trên đối
với giá trị nhỏ nhất. Giá trị nhỏ nhất của tập A kí hiệu là Min (A).
Tập A
⊂
R
được gọi là bị chặn trên nếu A có ít nhất 1 cận trên; được gọi là bị
chặn dưới nếu A có ít nhất 1 cận dưới. A ⊂
R
được gọi là bị chặn nếu nó vừa bị
chặn trên, vừa bị chặn dưới.
* Phần tử bé nhất trong các cận trên của A ⊂
R
, nếu tồn tại, được gọi là cận
trên đúng của A, kí hiệu là Sup (A).
Phần tử lớn nhất trong các cận dưới của A ⊂
R
, nếu tồn tại, được gọi là cận
dưới đúng của A, kí hiệu là Inf(A).
Tiên đề về cận trên đúng.
Mọi tập con không rỗng và bị chặn trên của
R
đều có cận trên đúng.
Tiên đề trên tương đương với: Mọi tập con không rỗng và bị chặn dưới của
R
đều có cận dưới đúng.
* Nếu A không bị chặn trên, ta quy ước viết Sup(A) = + ∞; nếu A không bị
chặn dưới, ta quy ước viết Inf(A) = -
∞
.
* Cho A ⊂
R
là tập con không rỗng. Khi đó:
+ M là một cận trên của A;
M = Sup(A)
⇔
+ ∀ε > 0, ∃a ∈ A, M - ε< a ≤ M.
* Căn bậc n của số dương. ∀a ∈
+
R
, ∀n nguyên dương, tồn tại duy nhất
12
b ∈
+
R
sao cho b
n
= a. Phần tử b này được kí hiệu bởi
n
a
hay a
1/n
và gọi là căn
bậc n của a. Với n = 2, ta kí hiệu
a
thay cho
2
a
.
* Tính chất Archimede. R có tính chất Archimede, cụ thể là:
∀
ε
> 0;
∀
A > 0,
∃
n
∈
*
N
: n
ε
> A.
* Phần nguyên. Với mọi x ∈
R
, tồn tại duy nhất số nguyên n ∈
Z
sao cho n ≤ x <
n + 1. Số nguyên như vậy được gọi là phần nguyên của x, kí hiệu [x], hoặc E(x).
* Cho 2 tập số thực A, B, hơn nữa A
⊂
B. Ta nói tập A là trù mật trong tập B
nếu
ε+<<ε−∈∃>ε∀∈∀ bab:Aa;0,Bb
.
* Tập các số hữu tỉ
Q
trù mật trong
R
.
* Tập các số vô tỉ
QR
\
trù mật trong
R
.
* Khoảng mở rộng. Cho a, b
∈
R
, a < b. Có 9 loại khoảng: [a;b]; [a;b); (a;b];
(a;b); (- ∞;a] ; (-∞; a); [a; + ∞); (a; + ∞); (- ∞; + ∞), được gọi chung là các khoảng mở
rộng; 4 loại đầu được gọi là bị chặn; a (b) được gọi là mút của khoảng.
DÃY SỐ
* Dãy
{}
n
u
được gọi là hội tụ đến
λ
(hay có giới hạn
λ
) nếu với mọi số ε > 0,
tồn tại N
∈
N
sao cho
,u
n
ε<−λ
∀
n > N.
Khi đó ta viết
λ=
∞→
n
n
ulim
hay u
n
→
λ
(n →∞).
* Ta nói
{}
n
u
là dãy hội tụ nếu tồn tại
λ
∈
R
để
λ=
∞→
n
n
ulim
. Ta nói
{}
n
u
phân
kì nếu nó không hội tụ.
* Ta nói
{}
n
u
tiến đến +
∞
(hay
{ }
n
u
dần ra +
∞
, hay
{ }
n
u
nhận +
∞
làm
giới hạn) nếu
∀ L > 0; ∃ N ∈
N
, ∀n > N, u
n
≥ L.
Khi đó ta viết
∞+=
∞→
n
n
ulim
hoặc u
n
→ +∞ (n →∞).
* Ta nói
{}
n
u
tiến đến
∞
(hay
{ }
n
u
có giới hạn
∞
,...) và viết
∞=
∞→n
n
ulim
nếu:
∀ L > 0; ∃ N ∈
N
, ∀n > N,
Au
n
≥
.
* Tính chất về thứ tự của giới hạn.
+ Nếu a
n
≤ b
n
với n ≥ n
0
nào đó,
bblim,aalim
n
n
n
n
==
∞→∞→
thì a ≤ b.
13
+ Định lý kẹp. Cho
{}{ } { }
nnn
wvu ,,
là 3 dãy. Nếu từ một chỉ số N nào đó trở
đi xảy ra bất đẳng thức
u
n
≤ w
n
≤ v
n
còn
{}
n
u
và
{}
n
v
hội tụ đến cùng một giới hạn
λ
. Khi đó
{ }
n
w
cũng hội tụ
đến
λ
.
* Các tính chất của dãy hội tụ.
{}
n
u
,
{ }
n
v
là 2 dãy; r,
λ
,
'
λ
là 3 số thực. Ta có:
1.
() ( )
∞→→⇒∞→→
nunu
nn
λλ
.
2.
() ( )
∞→→⇒∞→→
n0un0u
nn
.
3.
() ()
⎪
⎩
⎪
⎨
⎧
∞→±→±⇒∞→→
→
.nvunv
u
'
nn
'
n
n
λλλ
λ
4.
() ( )
∞→λ→λ⇒∞→→
nunu
nn
λλ
.
5.
()
{} ( )
⎩
⎨
⎧
∞→→⇒
∞→→
.n0vucnbiv
n0u
nnn
n
6.
() ()
⎪
⎩
⎪
⎨
⎧
∞→→⇒∞→→
→
.nvunv
u
'
nn
'
n
n
λλλ
λ
7.
(){}
nn
u/1n0u
⇒∞→≠→λ
được xác định từ một chỉ số N nào đó và 1/u
n
→ 1/
λ
(n → ∞).
8. u
n
→
λ
; v
n
→
0
'
≠λ
(n → ∞) ⇒ {u
n
/v
n
} được xác định từ một chỉ số N nào
đó và
'
n
n
n
v
u
lim
λ
λ
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
∞→
.
* Sự hội tụ của dãy đơn điệu.
{}
n
u
được gọi là dãy tăng (giảm) nếu u
n+1
≥ u
n
(u
n+1
≤ u
n
) với mọi n.
{}
n
u
được gọi là tăng (giảm) thực sự nếu u
n+1
> u
n
(u
n+1
< u
n
) với mọi n.
Dãy tăng hoặc giảm gọi chung là dãy đơn điệu.
Dãy tăng (giảm), bị chặn trên (dưới) thì hội tụ.
Dãy tăng, không bị chặn trên thì dần ra + ∞.
* Dãy kề nhau.
Hai dãy
{}
n
u
và
{}
n
v
được gọi là kề nhau nếu
{ }
n
u
tăng,
{ }
n
v
giảm và
v
n
- u
n
→ 0 (n → ∞).
14
Hai dãy
{}
n
u
và
{}
n
v
kề nhau thì chúng hội tụ đến cùng một giới hạn
λ
.
Hơn nữa
n1n1nn
vvuu ≤≤≤≤
++
λ
∀
n
∈
N
.
* Dãy con.
Cho dãy
{}
n
u
: u
1
, u
2
, u
3
... Dãy
{ }
k
n
u
với các chỉ số thoả mãn:
n
1
< n
2
< n
3
< ... được gọi là 1 dãy con trích ra từ dãy
{ }
n
u
.
* Nếu
{}
n
u
có giới hạn
λ
thì mọi dãy con trích ra từ đó cũng có giới hạn
λ
.
* Cho
{}
n
u
là một dãy,
λ
∈
R
. Khi đó u
n
→
λ
(n→∞) khi và chỉ khi
λ=
∞→
n2
n
ulim
và
λ=
+
∞→
1n2
n
ulim
.
Có thể mở rộng định lý này bằng cách tách dãy
{ }
n
u
thành hai hoặc k dãy con
rời nhau.
* Bổ đề Bolzano - Weierstrass. Từ một dãy số thực bị chặn luôn có thể trích ra
một dãy con hội tụ.
* Nếu từ dãy
{ }
n
x
có thể trích ra một dãy con
{ }
k
n
x
hội tụ đến giới hạn a
∈
R
thì a được gọi là điểm giới hạn của dãy đã cho.
* Giới hạn trên, giới hạn dưới.
{}
n
u
là dãy số.
{ }
k
n
u
là một dãy con của nó thoả mãn
-
λ=∃
∞→
k
n
k
ulim
;
- Đối với mọi dãy con
{ }
k
m
u
khác mà
'
k
m
k
ulim λ=∃
∞→
thì
λλ≤
'
.
Khi đó
λ
được gọi là giới hạn trên của dãy
{ }
n
u
, kí hiệu
n
u
lim
.
Tương tự ý nghĩa cho
n
u
lim
. Ta có:
a) Luôn tồn tại
∞+≤
n
u
lim
; hơn nữa nếu
{ }
n
u
không bị chặn trên thì
∞+=
n
ulim
.
b) Nếu
{}
n
u
bị chặn trên bởi M thì
Mulim
n
≤
.
c)
λλ==⇔=
∞→
nnn
n
ulimulimulim
.
* Dãy Cauchy. Dãy
{}
n
u
được gọi là dãy Cauchy nếu
∀
ε
> 0,
∃
N
∈
*
N
,
∀
m, n > N:
ε≤−
mn
xx
.
*
{}
n
u
là dãy Cauchy
15
⇔ ∀ ε > 0, ∃N ∈
*
N
, ∀ n > N:
ε≤−
+
pnn
xx
, ∀p ≥ 0.
* Dãy
{}
n
u
là dãy Cauchy khi và chỉ khi nó hội tụ.
* Dãy
{}
n
a
được gọi là vô cùng bé so với dãy
{ }
n
b
, viết a
n
= o (b
n
) nếu
0
b
a
lim
n
n
n
=
∞→
.
* Dãy
{}
n
a
được gọi là cùng bậc với dãy
{ }
n
b
, viết a
n
= O (b
n
) nếu
0k
b
a
n
n
n
≠=
∞→
lim
.
* Dãy
{}
n
a
được gọi là tương đương với
{ }
n
b
, nếu
1
b
a
n
n
n
=
∞→
lim
, viết a
n
∼
b
n
.
* Một số giới hạn đặc biệt
+
()
;ne
n
1
1
n
∞→→
⎟
⎠
⎞
⎜
⎝
⎛
+
+
()()
;0an1a
n
>∞→→
+
()
;ne
!n
1
...
!2
1
11 ∞→→++++
+
()
∞→∞+→++++ n
n
1
...
3
1
2
1
1
;
+
()
∞→
π
→++++ n
6
n
1
...
3
1
2
1
1
2
222
.
CHUỖI SỐ
* Cho
{}
n
u
là một dãy số. Tổng hình thức
∑
∞
=
=++
1n
n21
u...uu
được gọi là một
chuỗi số.
,...u,u
21
: các số hạng; u
n
: số hạng thứ n hay số hạng tổng quát.
n21n
u...uuS +++=
: tổng riêng thứ n.
Nếu tồn tại gới hạn hữu hạn
SSlim
n
n
=
∞→
ta nói chuỗi hội tụ, có tổng S và viết
∑
∞
=
=
1n
n
uS
. Trái lại, ta nói chuỗi phân kì.
* Chuỗi phần dư.
∑
∞
+=
=
1ni
in
uR
được gọi là phần dư thứ n của chuỗi. Chuỗi hội
tụ khi và chỉ khi R
n
hữu hạn và
( )
∞→→ n0R
n
.
16
* Sự hội tụ hay phân kì của chuỗi không thay đổi khi ta thêm, hoặc bớt, hoặc
thay đổi một số hữu hạn số hạng của chuỗi.
* Nếu các chuỗi
∑∑
∞
=
∞
= 1n
n
1n
n
v,u
hội tụ thì các chuỗi
()( ) ( )
∑∑
∞
=
∞
=
±∈∀
1n
nn
1n
n
vu,aua
R
cũng hội tụ và
()
∑∑∑∑∑
∞
=
∞
=
∞
=
∞
=
∞
=
±=±=
1n
n
1n
n
1n
nn
1n
n
1n
n
vuvu;uaua
.
* Tiêu chuẩn Cauchy về sự hội tụ của chuỗi số. Chuỗi
∑
∞
=
1n
n
u
hội tụ
:0q,Np,N,0 >∀≥∀∃>ε∀⇔
ε≤=−
∑
+
+=
+
qp
1pn
npqp
uSS
.
* Khi
n0a
n
∀≥
, chuỗi
∑
∞
=1n
n
a
được gọi là chuỗi số dương.
* Chuỗi số dương
∑
∞
=1n
n
a
hội tụ khi và chỉ khi dãy tổng riêng
{ }
n
S
bị chặn.
* Cho hai chuỗi số dương
∑∑
∞
=
∞
= 1n
n
1n
n
v,u
sao cho
nn
vu0 ≤≤
. Khi đó
+ Nếu
∑
∞
=
1n
n
v
hội tụ thì
∑
∞
=
1n
n
u
hội tụ;
+ Nếu
∑
∞
=
1n
n
u
phân kì thì
∑
∞
=
1n
n
v
phân kì.
* Nếu
()
∞+∈=
∞→
;0k
v
u
lim
n
n
n
thì hai chuỗi
∑
∞
=
1n
n
u
và
∑
∞
=
1n
n
v
cùng hội tụ hoặc
cùng phân kì.
* Tiêu chuẩn D’Alembert. Giả sử đối với chuỗi số dương
∑
∞
=
1n
n
u
tồn tại giới
hạn
λ=
+
∞→
n
1n
n
u
u
lim
.
17
Nếu
1<λ
thì chuỗi
∑
∞
=
1n
n
u
hội tụ;
1>λ
thì chuỗi phân kì.
* Tiêu chuẩn Cauchy. Cho chuỗi số dương
∑
∞
=1n
n
u
sao cho
λ=
∞→
n
n
n
ulim
.
Nếu
1<λ
thì chuỗi
∑
∞
=
1n
n
u
hội tụ;
1>λ
thì chuỗi phân kì.
* Tiêu chuẩn tích phân. Cho hàm f(x) liên tục, không âm, đơn điệu giảm trên
[
)
∞+;a
. Khi đó tích phân suy rộng
()
dxxf
a
∫
∞+
và tổng
∑
∞
=1n
n
u
với u
n
= f(n) cùng
hội tụ hoặc cùng phân kì.
§1.1. SỐ THỰC
Bài 1.1.1.
Tìm Inf, Sup, Min, Max (nếu có) của các tập:
a)
[] [ ]
{}
0x:x/1xA >+=
;
b)
()
⎪
⎭
⎪
⎬
⎫
⎪
⎩
⎪
⎨
⎧
∈
−
+=
*
n
n
n:
n
1
2
1
B
N
;
c)
()
⎪
⎭
⎪
⎬
⎫
⎪
⎩
⎪
⎨
⎧
∈−
−+
=
*2
n
n:n
n
11
C N
;
d)
⎭
⎬
⎫
⎩
⎨
⎧
∈
π
+
−
=
*
n:
3
n2
sco
1n
1n
D
N
;
e)
{ }
0x:22E
x/1x
>+=
Giải.
a) Từ chỗ
1
x
1
x
=
suy ra
1x
≥
hoặc
1
x
1
≥
. Vậy
[ ]
1x ≥
hoặc
1
x
1
≥
⎥
⎦
⎤
⎢
⎣
⎡
, từ đó
[]
1
x
1
x
≥
⎥
⎦
⎤
⎢
⎣
⎡
+
.
Mặt khác
1
3
2
2
3
=
⎥
⎦
⎤
⎢
⎣
⎡
+
⎥
⎦
⎤
⎢
⎣
⎡
.
Vậy
,1MinAAInf
==
đạt được tại, chẳng hạn, x = 3/2.
18
Chúng ta cũng có thể xét hàm
()
[]
⎥
⎦
⎤
⎢
⎣
⎡
+=
x
1
xxf
trên các tập
{}{}
[]
∞+
⎟
⎠
⎞
⎜
⎝
⎛
⎥
⎦
⎤
⎜
⎝
⎛
;2;1;1\2;
2
1
;
2
1
;0
rồi suy ra kết luận.
Vì
()
∞+=
∞+→
xflim
x
nên SupA = + ∞.
b) Đặt
()
n
1
2
1
u
n
n
n
−
+=
. Với
*
k
N
∈
ta có:
+
2
k2
k2
u
4
3
k2
1
2
1
u =≤+=
.
+
;
8
1
2
1
1k2
1
2
1
u
1k21k2
1k2
≤≤
+
−=
++
+
2
1
u
3
1
1k2
1
1k2
1
2
1
u
1
1k2
1k2
−=≥−≥
+
−≥
+
−=
+
+
.
Vậy
.
4
3
uMaxBSupB;
2
1
uMinBInfB
21
===−===
c) Đặt
()
*2
n
n
n,n
n
11
u
N
∈−
−+
=
.
+
,n2n
n
2
u
22
n
−≤−<
vậy B không bị chặn dưới.
+
1u
1
−=
.
+
242n2u
2
n
−=−≤−≤
với n = 2, 3, ...
Vậy
1uBMaxBSup;BInf
1
−===∞−=
.
d) Với k = 0, 1, 2, ... ta có
+
()
()
∞→−↓
⎟
⎠
⎞
⎜
⎝
⎛
+
−=
+
−=≥
+
k
2
1
k3
2
12
1
2k32
k3
u0
1k3
.
+
()
()
∞→−↓
⎟
⎠
⎞
⎜
⎝
⎛
+
+
−=
+
+
−=≥
+
k
2
1
1k3
2
12
1
3k32
1k3
u0
2k3
.
+
()
∞→↑
+
+
=
+
+
=<
+
k1
2
k3
2
1
1
4k3
2k3
u0
3k3
.
Vậy
1SupD;
2
1
InfD =−=
.
19
e) Ta có
( )
4222222
2x/1xx/1x
=≥≥+
+
;
Đẳng thức xảy ra khi và chỉ khi x = 1/x hay x = 1.
Vậy
4MinEInfE ==
, đạt được tại x = 1.
+
( )
∞+=+
∞+→
x/1x
x
22lim
, vậy
∞+=SupE
.
Bài 1.1.2. Cho A, B là hai tập con khác trống trong
R
, kí hiệu:
{}
Ax:xA ∈−=−
;
{}
;By;Ax:yxBA ∈∈+=+
{}
.By;Ax:yxBA ∈∈−=−
Chứng minh rằng
a)
() ( )
InfAASup;SupAAfIn −=−−=−
;
b)
() ()( )
BSupASupBASup +=+
;
c)
() ()( )
BInfASupBASup −=−
.
Giải.
a) Giả sử A bị chặn trên, đặt M = SupA. Với mọi
( )
Ax −∈
thì
Ax ∈−
nên
Mx ≤−
hay
xM ≤−
; vậy
M−
là một cận dưới của (-A).
Cho n là một cận dưới của
()
an,Aa:A −≤∈∀−
. Suy ra
na −<
, thế thì
n−
là một
cận trên của A. Vậy
nM −≤
hay
Mn −≤
. Suy ra
M−
là cận dưới bé nhất của (-A).
Nếu A không bị chặn trên:
∞+=SupA
, dễ thấy (-A) không bị chặn dưới hay
()
∞−=− AInf
Tương tự, Sup(-A) = -InfA ; (a) được chứng minh.
b) Giả sử cả A và B đều bị chặn trên đặt M = SupA; N = SupB. Lấy
;BAc +∈
tồn tại
Bb;Aa ∈∈
để c = a + b, suy ra
NMc +≤
. Điều này chứng tỏ M +
N là một cận trên của A + B.
Hơn nữa, với mọi
0>ε
, tồn tại
By;Ax ∈∈
sao cho
Ny
2
N;Mx
2
M ≤<
ε
−≤<
ε
−
do đó
NMyxNM +≤+<ε−+
. Vì
,BAyx +∈+
từ
định nghĩa suy ra
( )
BASupNM +=+
.
Nếu A hoặc B (hoặc cả hai) không bị chặn trên thì A + B cũng không bị chặn
trên. Từ định nghĩa ta suy ra
( )
SupBSupABASup +=∞=+
.
20
c) Đẳng thức (c) là hệ quả của (a) và (b). Thật vậy,
Sup(A-B) = Sup (A+(-B)) = SupA + Sup(-B) = SupA - InfB.
Lưu ý. Lập luận tương tự như trên ta còn chứng minh được:
+ Inf(A+B) = InfA + InfB;
+ Inf(A-B) = InfA - SupB;
+ Với
( )
()
ASup/1AInf;A
1*
=⊂
−
+
R
...
Bài 1.1.3.
Tìm giá trị nhỏ nhất của tổng
∑
=
=
n
1k
2
k
aS
với điều kiện
1a
n
1k
k
=
∑
=
.
Giải.
Theo bất đẳng thức Bunhiacopski ta có
n
1
a
n
1
1a
n
1
na
n
1
S
2
n
1k
k
n
1k
n
1k
2
k
n
1k
2
k
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
≥
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
==
∑∑∑∑
====
.
Đẳng thức xảy ra với a
k
= 1/n, k = 1, 2, ..., n. Do đó giá trị nhỏ nhất cần tìm là
1/n.
Bài 1.1.4.
Chứng minh rằng tập
{ }
N
∈n:nsinn
không bị chặn.
Giải. Với L > 0 tùy ý, đặt N = [2L] + 1.
N là một số nguyên,
1L2N +≥
. Xét 7 số nguyên liên tiếp N, N + 1, ..., N + 7.
Khi thể hiện góc lượng giác của 7 số nguyên này lên vòng tròn đơn vị, có ít
nhất một điểm nằm trên cung
AC
(vì độ dài cung
AC
bằng
13/2 >π
).
Vậy có ít nhất một trong 7 số nói trên có sin lớn hơn 1/2, chẳng hạn đó là
{}()
7...;;1;0iiNN
0
∈+=
. Từ đó
CA
B
0
,5
O1
x
y
21
L
2
1
NNsinN
000
>>
.
Vậy tập đã cho không bị chặn trên. Tương tự, tập đó cũng không bị chặn dưới.
Bài 1.1.5. Chứng minh rằng khi bỏ đi một tập hữu hạn từ một tập trù mật
trong
R
ta được một tập vẫn còn trù mật trong
R
.
Giải. Giả sử tập D trù mật trong
R
và F là tập con gồm hữu hạn phần tử của
D. Xét x, y tùy ý của
R
với x < y. vì D trù mật trong
R
nên có vô số phần tử của
D trên khoảng (x;y). Vì F hữu hạn nên sau khi bỏ đi F, ta vẫn còn ít nhất một
phần tử của D trên (x;y) (đpcm).
Bài 1.1.6. Kí hiệu
{ }
Q
∈= q:qE
2
và
{ }
EED
−∪=
.
Chứng minh rằng D trù mật trong
R
.
Giải. Cho hai số thực x, y: x < y.
* Nếu
0x ≥
thì
yx
≤
. Do
Q
trù mật trong
R
, tồn tại
Q
∈q
sao cho
yqx
<<
, từ đó
yqx
2
<<
, trong đó
Dq
2
∈
.
* Nếu
0y ≤
thì
xy −<−
; tồn tại
Q
∈q
sao cho
xqy −<<−
, từ đó
yqx
2
<−<
trong đó
Dq
2
∈−
.
* Nếu x < 0 và y > 0, ta có thể chọn q = 0.
Tóm lại, D là tập trù mật trong
R
.
Bài 1.1.7. Chứng minh rằng
632;2 ++
là các số vô tỉ.
Giải.
a) Giả sử có hai số nguyên dương m, n sao cho ƯCLN (m, n) = 1 và
2
n
m
=
hay
22
n2m =
.
Suy ra
2m
2
Μ
, do đó
2mΜ
. Vậy
2
2
m
n
2
2
Μ=
, suy ra
2nΜ
.
Vậy m và n nhận 2 làm một ước chung, mâu thuẫn.
Có thể nhận được mâu thuẫn bằng cách khác. Từ chỗ
22
n2m =
suy ra
()()
.nmnmnmn
222
+−−=Μ
(*)
22
Mặt khác, do ƯCLN(m,n) = 1 nên
ƯCLN (n; m-n) = ƯCLN (n; m + n) = 1 mâu thuẫn với (*).
b) Lí luận tương tự như phần (a) ta được
6
là số vô tỉ. Giả sử
Q
∈++= 632q
, ta có
()( )
()
61q21q6q32
2
22
+=+⇔−=+
.
Vế trái là số hữu tỉ, vế phải là số vô tỉ, mâu thuẫn.
Bài 1.1.8.
a) Chứng minh rằng mỗi tập con vô hạn của một tập đếm được là một tập đếm
được.
b) Chứng minh rằng hợp của hai tập đếm được là một tập đếm được.
Giải.
a) Cho E là một tập đếm được và F là tập con vô hạn của E. Tồn tại một song
ánh
N
→E:f
. Vì ánh xạ
( )
Fffg
F
→=
xác định bởi
( ) ( )
Fxxfxg
∈∀=
là một
song ánh nên ta chỉ cần chứng minh f(F) đếm được. Xây dựng ánh xạ
()
Ff:
→ϕ
N
như sau:
() ()
FfMin0
=ϕ
;
() ( ) ( ){}()
0\FfMin1 ϕ=ϕ
;
() () () ( ){}()
...1n,...,0\FfMinn
−ϕϕ=ϕ
Dễ thấy
ϕ
là một ánh xạ và là một song ánh. Từ đó f(F) đếm được và ta nhận
được đpcm.
b) Giả sử E, F là hai tập đếm được bất kì.
Trường hợp 1:
∅=∩ FE
. Tồn tại hai song ánh
E:f →N
và
F:g →N
. Dễ
kiểm chứng rằng ánh xạ
FE:h ∪→
N
xác định bởi
()
2/nf
nếu n chẵn;
()
⎩
⎨
⎧
=nh
()()
2/1ng
+
nếu n lẻ
là một song ánh. Vậy
FE∪
là tập đếm được.
Trường hợp 2:
∅≠∩ FE
. Xét
{}
0EE
'
×=
và
{}
1FF
'
×=
; chúng đều là những
tập đếm được và không giao nhau. Theo trường hợp 1,
''
FE ∪
là tập đếm được.
Mặt khác, đặt
{}()( )
{ }
.Ex&Fx:1,x0EG ∈∈∪×=
Đây là tập vô hạn, được chứa trong tập đếm được
''
FE ∪
nên nó là tập
đếm được.
23
Xây dựng ánh xạ
GFE: →∪ϕ
như sau:
()
⎩
⎨
⎧
=ϕ∪∈∀ x,FEx
( )
0,x
nếu
;Ex ∈
( )
1,x
nếu
Fx ∈
và
.Ex ∈
Rõ ràng
ϕ
là một song ánh. G đếm được nên
FE
∪
cũng đếm được. Tóm
lại ta luôn có
FE ∪
là tập đếm được.
Lưu ý. Với trường hợp 2, khi
∅≠∩FE
ta còn có thể chứng minh như sau:
Ta có
()()
HEFE\FEFE ∪=∩∪=∪
với
( )
FE\FH ∩=
.
Rõ ràng
∅=∩EH
và H là tập con của F.
+ Nếu H gồm vô hạn phần tử, theo (a) H đếm được; theo trường hợp 1,
EH∪
đếm được.
+ Giả sử
{}
.h,...,hH
n1
=
Gọi
E:f
*
→
N
là song ánh từ
*
N
lên E. Xét
HE:g
*
∪→
N
xác định bởi:
() ( ) ( ) ( ) ( ) ( )
...,2f2ng,1f1ng,hng,...,h1g
n1
=+=+==
Rõ ràng g là song ánh, vậy
HE∪
đếm được.
Bài 1.1.9. Chứng tỏ rằng ánh xạ
*
:f
NNN
→×
xác định bởi:
()( )
n
21m2n,mf +=
là một song ánh.
Suy ra rằng
QZNN
;;
2
×
đều là những tập đếm được.
Giải.
* Cho N
*
N
∈
, tồn tại (duy nhất)
N
∈n
sao cho
n
2N Μ
và
1n
2N
+
Μ
.
Đặt
n
2/Np=
thì p là một số nguyên lẻ, do đó
1m2p +=
. Vậy
()
nn
21m22pN +==
, suy ra f là ánh xạ lên.
Nếu N
*
N
∈
và
()
n
21m2N +=
thì n là số mũ của 2 trong dạng phân tích của
N ra thừa số nguyên tố, suy ra tính duy nhất của n rồi của m.
Vậy f là đơn ánh, từ đó f là song ánh.
* Ánh xạ h:
*
NN
→
với
( )
1nnh +=
là song ánh, vậy
*
N
đếm được, theo
điều đã chứng minh suy ra
NN
×
đếm được.
* Vì
()()()()()()()
NNNNNNNZ
−×−∪×−∪−×∪=
22
, suy ra tập
2
Z
đếm được.
24
* Từ chỗ
2
ZQ
⊂
suy ra tập
Q
đếm được.
§1.2. TÌM GIỚI HẠN THEO ĐỊNH NGHĨA
+ Điều quan trọng là ta phải làm trội
λ−
n
u
bởi g(n) nào đó sao cho dễ giải
được bất đẳng thức g(n) < ε, hoặc dễ chỉ ra nó nghiệm đúng với n > N nào đó.
+ Có thể ta làm trội
λ−
n
u
bởi tổng h(n) + k(n) rồi giải riêng
()
2
nh
ε
<
với n > N
1
,
()
2
nk
ε
<
với n > N
2
.
Khi đó với N = max(N
1
, N
2
) thì
λ−
n
u
<
ε
.
Các kiến thức về bất đẳng thức luôn cần thiết.
Bài 1.2.1.
a) Chứng minh rằng nếu
au
n
n
=
∞→
lim
thì
.
...
lim
a
n
uu
n1
n
=
++
∞→
b) Chứng minh rằng nếu
0u;aulim
nn
n
>=
∞→
thì
a
u
1
u
1
n
n1
n
=
++
∞→
...
lim
.
c) Chứng minh rằng nếu
∞+=
∞→
n
n
ulim
thì
∞+=
++
∞→
n
u...u
lim
n1
n
.
Giải. Đây là hệ quả của định lý Toeplitz. Tuy nhiên ta có thể chứng minh
chúng sơ cấp hơn như sau.
a) Vì dãy
{}
n
u
có giới hạn nên bị chặn, vậy có số M để
nMu
n
∀≤
,
. Hơn nữa với ε > 0,
∃N
1
để ∀n > N
1
,
1n
Nn.2au
>∀ε<−
ta có
()
()
()
n
au...au
n
au...au
au...uu...u
n
1
n1NN1
n1NN1
11
11
−++−
+
−++−
≤
≤−+++++
+
+