Bài tập Tọa độ trong không gian nguyễn vũ minh
Câu IV.a Trong không gian với hệ tọa độ Oxyz , cho điểm M(1;0;5) và hai mặt phẳng P) :
2 3 1 0− + + =x y z
và (Q) :
5 0+ − + =x y z
.
a. Tính khoảng cách từ M đến mặt phẳng (Q) .
b. Viết phương trình mặt phẳng ( R ) đi qua giao tuyến (d) của (P) và (Q) đồng thời vuông góc với mặt phẳng (T) :
3 1 0− + =x y
.
Câu IV.a Trong không gian với hệ tọa độ Oxyz , cho 4 điểm A(
−
2;1;
−
1) ,B(0;2;
−
1) ,C(0;3;0) D(1;0;1) .
a. Viết phương trình đường thẳng BC .
b. Chứng minh rằng 4 điểm A,B,C,D không đồng phẳng .
c. Tính thể tích tứ diện ABCD .
Câu IV.a Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng
1
1 2
( ) :
2 2 1
− −
∆ = =
− −
x y z
,
2
2
( ) : 5 3
4
= −
∆ = − +
=
x t
y t
z
a. Chứng minh rằng đường thẳng
1
( )∆
và đường thẳng
2
( )∆
chéo nhau .
b. Viết phương trình mặt phẳng ( P ) chứa đường thẳng
1
( )∆
và song song với đường thẳng
2
( )∆
.
Câu IV.a Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC với các đỉnh là A(0;
2
−
;1) , B(
3−
;1;2) , C(1;
1−
;4) .
a. Viết phương trình chính tắc của đường trung tuyến kẻ từ đỉnh A của tam giác .
b. Viết phương trình tham số của đường thẳng đi qua điểm C và vuông góc với mặt
phẳng (OAB) với O là gốc tọa độ .
Câu IV.a Cho D(-3;1;2) và mặt phẳng (
α
) qua ba điểm A(1;0;11), B(0;1;10), C(1;1;8).
1.Viết phương trình tham số của đường thẳng AC
2.Viết phương trình tổng quát của mặt phẳng (
α
)
3.Viết phương trình mặt cầu tâm D bán kính R= 5.Chứng minh mặt cầu này cắt (
α
)
Câu IV.a Trong không gian với hệ tọa độ Oxyz cho ba điểm :A(1;0;-1); B(1;2;1); C(0;2;0). Gọi G là trọng tâm của tam giác ABC
1.Viết phương trình đường thẳng OG
2.Viết phương trình mặt cầu ( S) đi qua bốn điểm O,A,B,C.
3.Viết phương trình các mặt phẳng vuông góc với đường thẳng OG và tiếp xúc với mặt cầu ( S).
Câu IV.a Trong không gian với hệ trục Oxyz, cho A(1;2;3) và đường thẳng d có phương trình
1
1 1
2 1 2
+
− −
= =
y
x z
.
1. Viết phương trình mặt phẳng
α
qua A và vuông góc d.
2. Tìm tọa độ giao điểm của d và mặt phẳng
α
.
Câu IV.a Trong không gian Oxyz cho ba điểm A( 2; -1 ;1), B( 0;2 ;- 3) C( -1 ; 2 ;0).
1.Chứng minh A,B,C không thẳng hàng .Viết phương trình mặt phẳng (ABC).
2.Viết phương trình tham số của đường thẳng BC.
Câu IV.a Trong không gian Oxyz cho 2 điểm A(5;-6;1) và B(1;0;-5)
1. Viết phương trình chính tắc của đường thẳng ( ∆ ) qua B có véctơ chỉ phương
r
u
(3;1;2).
2. Viết phương trình mặt phẳng (P) qua A và chứa ( ∆ )
Câu IV.a Trong không gian với hệ trục toạ độ Oxyz cho các điểm A(1,0,0); B(0,2,0); C(0,0,3)
1. Viết phương trình tổng quát của mặt phẳng qua ba điểm:A, B, C
2. Lập phương trình đường thẳng (d) qua C và vuông góc mặt phẳng (ABC)
Câu IV.b Trong không gian với hệ trục toạ độ Oxyz cho các điểm A(1,0,0); B(0,2,0); C(0,0,3)
1. Viết phương trình tổng quát của mặt phẳng qua ba điểm:A, B, C
2. Gọi (d) là đường thẳng qua C và vuông góc mặt phẳng (ABC).
3. Tìm tọa độ giao điểm của đường thẳng (d) và mặt phẳng (Oxy).
Câu IV.b Trong không gian Oxyz, cho các điểm A(-1; 2; 0), B(-3; 0; 2), C(1; 2; 3),
D(0; 3; -2).
1.Viết phương trình mặt phẳng (ABC).
2. Viết phương trình mặt phẳng
( )
α
chứa AD và song song với BC.
Câu IV.a Trong không gian Oxyz cho đường thẳng
1 3 2
:
1 2 2
+ + +
= =
x y z
d
và điểm A(3;2;0)
1.Tìm tọa độ hình chiếu vuông góc H của A lên d
2. Tìm tọa độ điểm B đối xứng với A qua đường thẳng d.
Câu IV.a Cho đường thẳng
3 1 2
:
2 1 2
− + −
= =
−
x y z
d
và mặt phẳng
( )
: 4 4 0
α
+ + − =x y z
.
Bài tập Tọa độ trong khơng gian nguyễn vũ minh
Tìm tọa độ giao điểm A của d và
( )
.
α
Viết phương trình mặt cầu
( )
S
tâm A và tiếp xúc mặt phẳng (Oyz).
Câu IV.a Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng
( )
2 1 3
:
1 2 2
− + +
∆ = =
−
x y z
và mặt phẳng
( )
: 5 0+ − + =P x y z
.
1. Tìm tọa độ giao điểm của đường thẳng
( )
∆
và mặt phẳng (P).
2. Viết phương trình hình chiếu vng góc của đường thẳng
( )
∆
trên mặt phẳng (P).
Câu IV.a Trong khơng gian
Oxyz
cho điểm
(1,1,1)M
và mặt phẳng
( ) : 2 3 5 0
α
− + − + =x y z
.
Viết phương trình đường thẳng
d
qua điểm
M
và vng góc với mặt phẳng
( )
α
.
Câu IV.a
1.Viết phương trình đường thẳng đi qua M(1,2,-3) và vng góc với mặt phẳng (P): x - 2y + 4z - 35=0
2.Viết phương trình mặt phẳng đi qua ba điểm A(2,-1,3), B(4,0,1), C(-10,5,3)
Câu IV.a Trong không gian Oxyz, cho điểm M(1;2;3)
1. Viết phương trình mặt phẳng (
α
) đi qua M và song song với mặt phẳng
2 3 4 0− + − =x y z
.
2. Viết phương trình mặt cầu (S) có tâm I(1;1;1) và tiếp xúc với mặt phẳng (
α
).
Câu IV.a Trong khơng gian với hệ tọa độ Oxyz , cho hai đường thẳng
1
1 2
( ) :
2 2 1
− −
∆ = =
− −
x y z
,
2
2
( ) : 5 3
4
= −
∆ = − +
=
x t
y t
z
1. Chứng minh rằng đường thẳng
1
( )∆
và đường thẳng
2
( )∆
chéo nhau .
2. Viết PTMP ( P ) chứa đường thẳng
1
( )∆
và song song với đường thẳng
2
( )∆
.
Câu IV.a Trong khơng gian với hệ tọa độ Oxyz , cho 4 điểm A(
−
2;1;
−
1) ,B(0;2;
−
1) ,C(0;3;0) , D(1;0;1) .
a. Viết phương trình đường thẳng BC .
b. Chứng minh rằng 4 điểm A,B,C,D khơng đồng phẳng .
c. Tính thể tích tứ diện ABCD .
Câu 6b Trong khơng gian với hệ toạ độ Oxyz, cho điểm E (1; 2; 3) và mặt phẳng (a) : x + 2y – 2z + 6 = 0.
1. Viết phương trình mặt cầu (S) có tâm là gốc toạ độ O và tiếp xúc với mặt phẳng (a) .
2. Viết phương trình tham số của đường thẳng (D) đi qua điểm E và vng góc với mặt phẳng (a) .
Câu 6b Trong khơng gian với hệ toạ độ Oxyz, cho
∆ABC
với A(1; 4; −1), B(2; 4; 3) và C(2; 2; −1).
1) Viết phương trình mặt phẳng đi qua A và vng góc với đường thẳng BC.
2) Tìm toạ độ điểm D sao cho tứ giác ABCD là hình bình hành.
Câu 6b Trong khơng gian với hệ tọa độ Oxyz, cho điểm A(2;−1; 3) và mặt phẳng (P) : x −2y −2z −10 = 0.
1. Tính khoảng cách từ điểm A đến mặt phẳng (P).
2. Viết phương trình đường thẳng đi qua điểm A và vng góc với mặt phẳng (P).