Chương 5c Tích phân
chuong3a – nick yahoo, mail:
..................................................................................................................................................2
.............................................................................................................................................2
.............................................................................................................................................2
.............................................................................................................................................3
.............................................................................................................................................4
.............................................................................................................................................5
.............................................................................................................................................5
.............................................................................................................................................6
...........................................................................................................................................7
.............................................................................................................................................8
.............................................................................................................................................8
4/ ........................................................................................................................................8
.............................................................................................................................................9
.............................................................................................................................................9
.........................................................................................................................10
5/ Tích phân hàm lượng giác:.................................................................................................10
...........................................................................................................................................10
...........................................................................................................................................12
..........................................................................................................................................13
...........................................................................................................................................13
..........................................................................................................................................14
..........................................................................................................................................15
..........................................................................................................................................16
...........................................................................................................................................17
..........................................................................................................................................18
..........................................................................................................................................18
...........................................................................................................................................19
..........................................................................................................................................21
...........................................................................................................................................22
............................................................................................................................................23
Check the result ................................................................................................................23
...........................................................................................................................................25
...........................................................................................................................................27
...........................................................................................................................................27
...........................................................................................................................................28
..........................................................................................................................................30
...........................................................................................................................................31
...........................................................................................................................................32
...........................................................................................................................................32
1
dx
1/ I = ∫
x2 + a2
dx
a/ I=∫
⇒x=
=
x2 + a2
2
= ln x + x 2 + a 2
2
t −a
, dx =
2t
4t 2 − 2t 2 + 2a 2
4t 2
2
x 2 + a 2 = t − x ⇒ x 2 + a 2 = ( t − x ) = t 2 − 2t.x + x 2
, put
(
)
.dt =
t2 + a2
2t 2
t2 + a2
dx
⇒∫
x2 + a2
1
=∫
(
'
'
t 2 − a 2 .2t − ( 2t ) . t 2 − a 2
4t 2
) .dt
.dt
.dt
2
dt
2t
= ∫ = ln t + C = ln x + x 2 + a 2 + C
t
t2 − a2
t−
2t
1
⇒∫
= ln x + x 2 + a 2 = ln 1 + 1 + a 2 − ln a
2
2
0
0 x +a
1b /
b/
dx
1
i.a
= ln tan .arcsin
x
2
x2 + a2
dx
∫
∫
dx
x2 + a2
dx
=∫
x2 −
'
⇒ dx =
−i.a. ( sin t ) .dt
=
(
−1.a
)
2
=∫
−i.a.cos t.dt
dx
x 2 − ( i.a )
2
i.a
, t = arcsin
x
i.a
( i2 = −1) put x = sin t
sin 2 t
sin 2 t
i.a.cos t.dt
i.a.cos t.dt
1
1
⇒ I = −∫
= −∫
sin 2 t i.a 2
sin 2 t −a 2
2
+ a2
− ( i.a )
2
sin t
sin t
2
−i.a.cos t.dt
= ∫
sin 2 t
−i.a.cos t.dt
= ∫
2
sin 2 t
−1 + sin t
1
a
sin 2 t
1
− cos 2 t
a
sin 2 t
−i.a.cos t.dt sin t
−dt
t
1
i.a
= ∫
=∫
= − ln tan = − ln tan .arcsin
sin t
2
x
2
sin 2 t i.a.cos t
1
a
= ln tan .arcsin put a = i.b
x
2
x2 − a2
dx
*∫
1
i.b
= ln tan .arcsin
x
2
x 2 + b2
dx
⇒∫
1c /
∫
c/
∫
dx
x2 + a2
dx
x2 + a2
= −i arcsin
i.x
+C
a
dx
=∫
−
(
−1.x
)
2
+ a2
=∫
dx
a 2 − ( i.x )
2
=∫
dx
i.x
a 1−
a
i.x
i.dx
a.du i.a.du
= u ⇒ du =
⇒ dx =
=
= −i.a.du
2
a
a
i
i
dx
−1 i.a.du
i.x
⇒∫
= ∫
= −i arcsin
+C
2
2
2
a
a
a −x
1− u
Put
dx
*I=∫
⇒I=∫
Put x = a.sin t ⇒ dx = a.cos t.dt, t = arcsin
a2 − x2
a.cos t.dt
=∫
a.cos t.dt
= ∫ dt = t = arcsin
a 2 − a 2 .sin 2 t
a cos 2 t
i.dy
i.y
Put x = i.y ⇒ I = ∫
= arcsin
a
a 2 + y2
⇒∫
i.y
= −i.arcsin
a
a 2 + y2
dy
3
x
a
x
a
2
( i2 = −1)
x = i.y ⇒ when x = 1, y = −i and when x = 2, y = −2i
2
⇒∫
1
2
dx
x2 + a2
dx
=∫
−
1
(
−1.x
)
2
=
+ a2
2
−2i
∫
−i
dy
a 2 + y2
−2i
i.y
⇒ ln x + x + a
= −i.arcsin
a −i
1
i. ( −i )
1
⇔ ln 1 + 1 + a 2 = −i.arcsin
= −i.arcsin , arcsin z = −i ln z ± z 2 + 1
a
a
2
2
eiw − e −iw
w = arcsin z ⇒ z = sin w =
2
⇒ e2i.w − 2z.eiw − 1 = 0 ⇒ eiw = z ± z 2 + 1
⇒ i.w = ln z ± z 2 + 1 ⇒ w = arcsin z = −i ln z ± z 2 + 1
x π
1
= ln tg .arctan + + C
a 4
2
x2 + a2
dx
a.dt
x
I=∫
Put x = a.tan t ⇒ dx =
, t = arctan
a
cos 2 t
x2 + a2
a.dt
a.dt
dt
⇒I=∫
=∫
=∫
1
cos 2 t a 2 .tan 2 t + a 2
a.cos 2 t tan 2 t + 1
cos 2 t
cos 2 t
*I=∫
dx
dt
t
π
∫ cos t = ln tan 2 + 4 ⇒ I = ∫
⇒∫
x π
1
= ln tg .arctan +
a 4
2
x2 + a2
dx
i.a
1
= ln x + x 2 + a 2 = i.ln tg .arcsin
x
2
x2 + a2
dx
= −i arcsin
i.x
x π
1
= ln tg .arctan +
a
a 4
2
4
2
so why
2
dx
∫
2
x +a
1
=∫
2
2
dx
(
x2 −
1
−1.a
)
dx
=∫
2
−
1
(
−1.x
)
2
but
+ a2
2
2
i.a
1
2
2
ln x + x + a ≠ i.ln tg .arcsin
x 1
1
2
2
2
i.x
x π
1
≠ −i arcsin ≠ ln tg .arctg +
a 1
a 4 1
2
dx
2a / I = ∫
a/ I=∫
a2 − x2
a.cos t.dt
⇒I=∫
*
x
a
dat x = a.sin t ⇒ dx = a.cos t.dt, t = arcsin
=∫
a.cos t.dt
= ∫ dt = t = arcsin
x
a
x
a
a 2 − a 2 .sin 2 t
a cos 2 t
dx
dx
x
dx
=∫
Dat
= u ⇒ du =
⇒ dx = a.du
2
2
2
a
a
a −x
x
a 1−
a
∫
dx
⇒∫
2b /
b/
a2 − x2
dx
= arcsin
a2 − x2
∫
∫
=
dx
1
a.du
x
= arcsin
∫
a 1 − u2
a
= −i.ln i.y + a 2 − y 2 + C
a2 − x2
dx
=∫
2
2
a −x
dx
( i.x )
2
+a
Dat
2
( i.x ) 2 + a 2
= t − i.x
2
⇒ − x 2 + a 2 = ( t − i.x ) = t 2 − 2t.ix − x 2
⇒x=
=
2
2
t −a
=
2t.i
(
)
t2 − a2 i
2t.i 2
−i4t 2 + 2t 2 .i − 2i.a 2
4t
2
dt =
=
(
)
− t2 − a2 i
2t
(
−i 2t 2 + 2a 2
4t 2
, dx =
(
) = −i ( t 2 + a 2 ) dt
2t 2
5
)
(
'
'
−i t 2 − a 2 .2t + ( 2t ) i t 2 − a 2
( 2t ) 2
) dt
(
−i t 2 + a 2
dx
⇒∫
(
2t
t − i.x
=∫
a2 − x2
2
)
−i. t 2 + a 2 dt
=∫
(
)
=∫
) dt
=∫
(
(
(
dx
*∫
)
−i. t 2 + a 2 dt
(
)
=∫
a 2 − y2
dy
⇒∫
∫
i.dy
∫
a 2 − y2
dx
a2 − x2
( )
t. ( t 2 + a 2 )
−i. t 2 + a 2 dt
= ln x + a 2 + x 2 + C put x = i.y, we have :
x2 + a2
dx = i.dy,
)
− t2 − a2 i
2t t − i.
2t
2
i2 t 2 − a 2
t2 − a2
2
2t t +
2t t −
2t
2t
−i.dt
=∫
= −i.ln t + C = −i.ln i.x + a 2 − x 2 + C
t
2
)
−i. t 2 + a 2 dt
= ln i.y + a 2 − y 2 + C
= −i.ln i.y + a 2 − y 2 + C
= arcsin
x
i.y
= arcsin
= −i.ln i.y + a 2 − y2
a
a
2
i.y
i.y
i.y
arcsin z = −i ln z ± z 2 + 1 , ⇒ arcsin
= −i.ln
+ +1
a
a
a
i.y + a 2 − y 2
= −i.ln
= −i. ln i.y + a 2 − y 2 − ln a = −i.ln i.y + a 2 − y 2 + C
a
2c / ∫
a
1
= i.ln tg .arcsin + C
x
2
a2 − x2
dx
6
dx
2c / ∫
=∫
a2 − x2
i.dx
i2
dx
=∫
( x2 − a2 )
=∫
( −1) ( x 2 − a 2 )
( x2 − a2 )
( i2 = −1)
−i.dx
=∫
dx
( x2 − a2 )
i
'
−a. ( sin t ) dt −a.cos t.dt
a
a
dat x =
⇒ dx =
=
t = arcsin
sin t
x
sin 2 t
sin 2 t
⇒I=∫
− ( −i ) a.cos t.dt
sin 2 t
1
.
a2
− a2
2
=∫
i.a.cos t.dt
sin 2 t
= i.ln tg
.
a
sin t
1
i.cos t.dt sin t
dt
=∫
.
= i.∫
sin t
sin 2 t cos t
1 − sin 2 t
sin 2 t
t
a
1
= i.ln tg .arcsin + C
2
x
2
2
Vay tai sao :
∫
1
dx
2
a −x
=∫
2
dx
( i.x )
2
+a
2
dx
=∫
( −1) ( x
2
−a
2
2
x
a
1
2
2
arcsin a ≠ i.ln tg 2 .arcsin x ≠ ln i.x + a − x
1
1
x2 − a2
−a.cos t.dt
sin 2 t
'
−a. ( sin t ) dt −a.cos t.dt
a
a
dat x =
⇒ dx =
=
t = arcsin
sin t
x
sin 2 t
sin 2 t
.
1
a2
2
sin t
=∫
2
1
a
1
= − ln tg .arcsin
x
2
x2 − a2
dx
⇒I=∫
)
nhung
dx
3a / I = ∫
a/∫
2
−a
2
=∫
−a.cos t.dt
sin 2 t
1
.
a
1 − sin 2 t
sin 2 t
− cos t.dt sin t
dt
t
a
1
.
= −∫
= − ln tg = − ln tg .arcsin
sin t
2
x
2
sin 2 t cos t
7
3b /
3b /
dx
∫
2
2
x −a
dx
∫
= ln x + x 2 + ( i.a )
dx
=∫
x2 − a2
2
x2 +
(
−1.a
2
)
+C
=∫
2
dx
x 2 + ( i.a )
Dat x + ( i.a ) = t − x ⇒ x − a = ( t − x )
2
(
dx =
)
2
'
'
(
2
t 2 + a 2 .2t − ( 2t ) t 2 + a 2
( 2t ) 2
2
t2 + a2
= t − 2t.x + x ⇒ x =
,
2t
2
2
2
) dt = 4t 2 − 2t 2 − 2a 2 dt = t 2 − a 2 dt
4t 2
2t 2
t2 − a2
dt
dt
2
2t 2
=∫
= ∫ = ln t + C = ln x + x 2 + ( i.a ) + C
2
2
t
t +a
x2 + a2
t−
2t
dx
⇒∫
3c / ∫
3c / ∫
=∫
2
dx
x2 − a 2
dx
x2 − a2
i.dx
2
i . a −x
2
= −i.arcsin
Vay tai sao :
∫
1
dx
=∫
=∫
2
x
a
=∫
dx
−1 a 2 − x 2
i. a 2 − x 2
−i.dx
x
= −i.arcsin
a
a2 − x2
dx
x2 − a2
2
2
=∫
1
2
dx
x2 +
(
−1.a
)
2
2
=∫
1
dx
−1 a 2 − x 2
2
a
x
1
− ln tg .arcsin ≠ ln x + x 2 − a 2 ≠ −i.arcsin
x1
a1
2
1
4/ I = ∫
dx
−x 2 − a 2
8
dx
I=∫
−x 2 − a 2
=∫
dx
−i.dx
=∫
i x2 + a2
x2 + a2
= −i.ln x + x 2 + a 2
i.a
i.x
x π
1
1
= ln tg .arcsin = − arcsin
= −i.ln tg .arctg +
x
a
a 4
2
2
i.a
1
= ln x + x 2 + a 2 = i.ln tg .arcsin
x
2
x2 + a2
dx
∫
= −i arcsin
i.x
x π
1
= ln tg .arctg +
a
a 4
2
2
∫
Vay tai sao :
−x 2 − a 2
1
2
2
dx
2
−idx
=∫
x2 + a2
1
dx
=∫
− x 2 + ( i.a )
1
=∫
nhung −i.ln x + x 2 + a 2
2
2
1 ( i.x ) − a
dx
2
2
2
i.a
1
≠ ln tg 2 .arcsin x
1
1
2
2
i.x
x π
1
≠ − arcsin ≠ −i.ln tg .arctg +
a 1
a 4 1
2
1
x
= .arctan + C
a
x2 + a 2 a
dx
x
* I=∫
Dat x = a.tgt ⇒ dx = a tg 2 t + 1 dt, t = arctan
a
x2 + a2
5/ I=∫
dx
(
dx
Vay :
∫ x2 + a2
*I= ∫
dx
*I= ∫
x2 + a2
dx
2
x +a
1
2
=
=∫
(
)
a tan 2 t + 1 dt
(
i
x + i.a
ln
2a x − i.a
dx
=∫
=
)
a 2 tan 2 t + 1
x2 −
(
−1.a
)
2
=
=∫
)
1
t 1
x
∫ dt = a = a .arctan a + C
a
dx
x − ( i.a )
2
2
=∫
dx
( x − i.a ) ( x + i.a )
A
B
+
⇒ A ( x + i.a ) + B ( x − i.a ) = 1
( x − i.a ) ( x + i.a )
( x − i.a ) ( x + i.a )
⇔ x ( A + B ) + i.a ( A − B ) = 1
9
( i2 = −1)
A + B = 0 ⇔ A = −B
⇔
1
i
−i
i
i.a ( A − B ) = 1 ⇒ A =
=
=
, B=
2i.a 2i 2 .a 2.a
2.a
d ( x − i.a ) i ( ln x + i.a − ln x − i.a )
i d ( x + i.a )
i
x + i.a
⇒ I2 = ∫
−∫
= ln
=
2a x + i.a
x − i.a
2a
2a x − i.a
2
2
2
2
x
i
x + i.a
1
so why : I = ∫
=∫
but .arctg ≠ ln
a 1 2a x − i.a 1
a
x 2 + a 2 1 x 2 − ( i.a ) 2
1
6/ I=∫
dx
dx
dx
x2 − a2
dx
dx
* I=∫
=∫
( x − a) ( x + a)
x2 − a2
1
A
B
=
+
⇒ A ( x + a ) + B( x − a ) = 1
( x − a) ( x + a) ( x − a) ( x + a)
A + B = 0 ⇔ A = −B
⇔ x ( A + B) + a ( A − B) = 1 ⇔
1
1
a ( A − B ) = 1 ⇒ A = 2a , B = − 2a
d( x + a)
1 d( x − a)
−∫
∫
2a x − a
x+a
⇒I=
*I= ∫
dx
x2 − a2
=∫
dx
x2 +
(
−1.a
)
2
ln x − a − ln x + a
1
x−a
= ln
=
2a
2a x + a
=∫
dx
x 2 + ( i.a )
2
(
)
i.a ( tg 2 t + 1) dt
dx
1
i.t
−i.t −i
x
Vay : ∫
=∫
= ∫ dt =
=
= .arctg + C
2
a
a
i.a
i 2 .a
x 2 + ( i.a )
( i.a ) 2 ( tg 2 t + 1) i.a
Dat x = i.a.tgt ⇒ dx = i.a tg 2 t + 1 dt, t = arctg
2
2
x
i.a
2
2
1
x −a
x
−i
Vay tai sao : ∫
=∫
nhung ln
≠ .arctg
2
2
2
2
i.a 1
2a x + a 1 a
1x −a
1 x + ( i.a )
dx
dx
5/ Tích phân hàm lượng giác:
* I=∫
dx
a sin x + b cos x + c
10
Put t = tg
=
x
2dt
x
x
⇒ x = 2arctgt, dx =
, sin x = 2sin .cos
2
2
2
1 + t2
2sin ( x/2 )
2tg ( x/2 )
1
2t
/
=
=
cos ( x/2 ) cos2 ( x/2 ) tg 2 ( x/2 ) + 1 1 + t 2
x
1
cos x = 2 cos2 − 1 = 2 −
2
cos2 ( x/2 )
(
)
2 − tg2 ( x/2 ) + 1 1 − t 2
1
/
=
=
2
cos2 ( x/2 )
tg ( x/2 ) + 1
1 + t2
2dt
* I=∫
dx
=
a sin x + b cos x + c ∫
1 + t2
b 1 − t2
) + c ( 1 + t2 )
(
a.t
+
1 + t2
1 + t2
1 + t2
2dt
2
dt
=∫
=
∫ 2 a.t c + b
t 2 ( c − b ) + a.t + b + c c − b t +
+
c−b c−b
2
dt
=
2
c−b∫
a
c+b
a2
−
t +
+
2 ( c − b)
c − b 4 ( c − b) 2
=
2
c−b∫
dt
2
(
2
)
4 c −b −a
a
t+
+
2
4 ( c − b)
2 ( c − b)
)
(
If 4 c2 − b2 − a 2 > 0 ⇒ put
t+
2
)
(
2
,
4 c 2 − b2 − a 2
4 ( c − b)
2
= q2 ,
a
x
a
= tan +
= y ⇒ dt = dy
2 ( c − b)
2 2 ( c − b)
⇒I=∫
(
2
dx
2
dy
2
y
=
=
arctan
a sin x + b cos x + c c − b ∫ y 2 + q 2 ( c − b ) .q
q
If 4 c − b
⇒I=∫
2
)
2
− a < 0 ⇒ put
(
)
4 c 2 − b2 − a 2
4 ( c − b)
2
= −q 2
dx
2
dy
2
dy
2
q+y
=
∫ y2 − q 2 = ( b − c ) ∫ q2 − y2 = ( b − c ) 2q ln q − y
a sin x + b cos x + c c − b
11
π
*
∫
−π
dx
=0
a sin x + b cos x + c
( With 4 ( c
2
)
− b2 − a 2 < 0
)
a
⇒ when y → +∞ ⇒ t → +∞, x = 2arctan t → π
2( c − b)
y=t+
when y → 0 ⇒ t →
−a
,
2 ( c − b)
−a
x = 2 arctan t → 2 arctan
2 ( c − b)
a
= −2arctan
2( c − b)
( with 4 ( c
when y → −∞ ⇒ t → −∞, x = 2 arctan t → −π
π
2
)
− b2 − a 2 < 0
+∞
dx
dy
2
=
∫ 2
a sin x + b cos x + c b − c y − q 2
0
∫
⇒ J1 =
a
−2arctan
2( c − b )
y=k
q+y
2
=
. lim ln
=0
( b − c ) 2q k →+∞ q − y y =0
π
+∞
dx
dy
2
J2 = ∫
=
∫ 2
a sin x + b cos x + c b − c y − q 2
−π
−∞
y =+∞
( With 4 ( c
q+y
2
=
ln
=0
( b − c ) 2q q − y y=−∞
(
2
)
− b2 − a 2 < 0
)
)
If 4 c2 − b 2 − a 2 > 0
⇒I=
π
∫
−π
=
dx
2
=
a sin x + b cos x + c c − b
+∞
2
( arctan ( +∞ ) − arctan ( −∞ ) )
( c − b ) .q
=
( c − b) .
(
2π
)
4 c2 − b2 − a 2
4( c − b)
2
=
(
+∞
2
y
∫ y2 + q 2 = ( c − b ) .q arctg q
−∞
−∞
dy
4π
)
4 c2 − b2 − a 2
12
)
π
sin n x.dx
∫
*
−π ( a sin x + b cos x + c )
( with 4 ( c
I( a) =
π
∫
−π
2
n +1
)
− b2 − a 2 < 0
)
=
π
cos n x.dx
∫
−π ( a sin x + b cos x + c )
dx
=0
a sin x + b cos x + c
( with 4 ( c
)
2
n +1
=0
− b2 − a 2 < 0
)
'
π
−1
'
⇒ I ( a ) = ∫ ( a sin x + b cos x + c ) dx
−π
a
=
π
'
∫ − ( a sin x + b cos x + c ) a .( a sin x + b cos x + c )
−2
dx
−π
π
− sin x.dx
−1 '
−2
'
=0
u ( a ) = −u ( a ) . u ( a ) = ∫
2
−π ( a sin x + b cos x + c )
'
π
π
( −1) 2 2sin 2 x.dx
− sin x.dx
''
= ∫
I ( a) = ∫
=0
2
3
−π ( a sin x + b cos x + c )
a sin x + b cos x + c )
a −π (
( n) =
I ( a )
( n) =
I ( b )
π
*
∫
π
π
( −1) n n!.sin n x.dx
sin n x.dx
=0⇒ ∫
=0
∫
n +1
n +1
a sin x + b cos x + c )
a sin x + b cos x + c )
−π (
−π (
π
π
( −1) n n!.cosn x.dx
cos n x.dx
=0⇒ ∫
=0
∫
n +1
n +1
−π ( a sin x + b cos x + c )
−π ( a sin x + b cos x + c )
sin x.dx
−π ( a sin x + b cos x + c )
2
=
−4π.a
3
2
2
2 2
4 c −b −a
((
)
)
13
( with 4 ( c
2
)
− b2 − a 2 > 0
)
π
I( a) =
∫
−π
dx
=
a sin x + b cos x + c
(
4π
2
4 c −b
) −a
2
( with 4 ( c
2
π
( −1) sin x.dx
4π
'
I ( a ) = ∫
=
2
4 c2 − b2 − a 2
−π ( a sin x + b cos x + c )
(
((
)
)
'
1
4π. − . 4 c2 − b 2 − a 2
a
2
=
=
( 4( c
⇒
π
−b
2
)
3
2 2
−a
)
sin x.dx
∫
2
−π ( a sin x + b cos x + c )
π
*
2
cos x.dx
∫
−π ( a sin x + b cos x + c )
π
2
=
=
)
− b2 − a 2 > 0
)
'
a
4π.a
( 4( c
2
−b
2
)
3
2 2
−a
)
−4π.a
3
2
2
2 2
4 c −b −a
((
)
)
3
4 c2 − b2 − a 2 2
((
)
)
(
( with 4 ( c
)
'
π
dx
I ( b) = ∫
a sin x + bcos x + c
−π
b
'
( −1) cos x.dx
4π
= ∫
=
2
4 c2 − b2 − a 2
−π ( a sin x + bcos x + c )
π
(
)
14
( with 4 ( c
( with 4 ( c
−16π.b
dx
4π
=
∫ a sin x + bcos x + c
4 c 2 − b2 − a 2
−π
I ( b) =
)
2
'
b
2
2
2
)
− b2 − a 2 > 0
)
− b2 − a 2 > 0
)
− b2 − a 2 > 0
)
)
)
((
)
)
,
1
4π. − 4 c2 − b 2 − a 2
b
2
=
=
3
4 c2 − b2 − a 2 2
((
⇒
π
cos x.dx
∫
−π ( a sin x + b cos x + c )
π
*
)
)
dx
∫
2
−π ( a sin x + b cos x + c )
I ( c) =
2
=
=
π
−2π. ( −8b )
3
4 c2 − b2 − a 2 2
((
)
)
−16π.b
( 4( c
2
−b
2
3
2 2
−a
)
)
( with 4 ( c
16π.c
3
4 c2 − b2 − a 2 2
((
)
)
dx
4π
=
a sin x + b cos x + c
4 c 2 − b2 − a 2
−π
∫
( with 4 ( c
2
)
− b2 − a 2 > 0
)
(
)
'
π
dx
I ( c ) = ∫
a sin x + b cos x + c
−π
c
'
( −1) dx
4π
= ∫
=
2
4 c2 − b2 − a 2
−π ( a sin x + b cos x + c )
π
)
(
((
)
)
,
1
4π. − 4 c2 − b2 − a 2
c
2
=
=
( 4( c
⇒
π
∫
2
−b
2
)
3
2 2
−a
)
dx
−π ( a sin x + b cos x + c )
2
=
'
c
−2π.8c
( 4( c
2
−b
2
)
3
2 2
−a
)
16π.c
( 4( c
2
−b
2
)
3
2 2
−a
)
15
2
)
− b2 − a 2 > 0
)
2π n
* lim
.∑
n →+∞ n i =0
1
−n.π + 2i.π
− n.π + 2i.π
a sin
+ b cos
+c
n
n
(
)
0
with 4 c2 − b 2 − a 2 < 0
4π
=
=
with 4 c2 − b2 − a 2 > 0
4 c2 − b2 − a 2
(
)
(
π
)
+∞
dx
dy
2
J2 = ∫
=
∫ 2
a sin x + b cos x + c b − c y − q 2
−π
−∞
y =+∞
q+y
2
=
ln
=0
( b − c ) 2q q − y y =−∞
1
2π
, x i ∈ [ −π, π] , ∆x =
,
a sin x + b cos x + c
n
2i.π − n.π + 2i.π
x i = −π +
=
n
n
Dat f ( x i ) =
2π n
.∑
n →+∞ n i = 0
⇒ lim I = lim
n →+∞
n
π
i =0
−π
∑ f ( xi ) .∆x = ∫
n →+∞
= lim
(
1
− n.π + 2i.π
− n.π + 2i.π
a sin
+ b cos
+c
n
n
dx
a sin x + b cos x + c
)
0
with 4 c2 − b2 − a 2 < 0
= 2π
with 4 c2 − b2 − a 2 > 0
( c − b ) .q
(
)
2dt
dx
dt
1 + t2
=∫
= 2∫
∫ 3cos x + 4sin x + 5
2t 2 + 8t + 8
3 1 − t2
8t
+
+5
1 + t2
1 + t2
dt
1
1
=∫
=−
=−
+C
2
x
t+2
t + 2)
(
tg + 2
2
(
)
16
* I=∫
dx
=
a cos x + b
(
x −a + b
.arctg tg .
+C
2 a+b
2
2
b −a
2
)
dx
x
1 − t2
2dt
* I=∫
dat t = tg ⇒ cos x =
, x = 2arctan t ⇒ dx =
a cos x + b
2
1 + t2
1 + t2
2dt
2dt
1 + t2
⇒I=∫
=∫
t 2 ( −a + b ) + ( a + b )
a 1 − t2 + b 1 + t2
(
) (
)
1 + t2
If ( a + b ) ( −a + b ) = b 2 − a 2 > 0 ⇔ b > a
⇒I=
2
( −a + b )
dt
∫
2
=
2
( −a + b )
a+b
t2 +
−a + b
dx
2
⇒I=∫
=
.arctan
a cos x + b
( −a + b ) ( a + b )
=
(
−a + b
.arctan
a+b
t
a+b
−a + b
t
a+b
−a + b
+C
+C
x −a + b
.arctan tg .
+C
2 a+b
2
2
b −a
2
)
a+b
If ( a + b ) ( −a + b ) = b2 − a 2 < 0 ⇔ b < a ⇒
= −
−a + b
b − a = − b2 − a 2
2
⇒I=
2
2
( −a + b )
⇒I=∫
∫
t −
2
2
dt
2
a+b
−a + b
a+b
−a + b
dx
1
=
a cos x + b ( a − b )
2
=
2
.
( a − b)
2
−a + b
.ln
a+b
1
a+b
−a + b
tg
x
+
2
a+b
−a + b
tg
x
−
2
a+b
−a + b
17
t+
a+b
−a + b
t−
a+b
−a + b
.ln
π
π
if b > a
2
π
dx
2
* lim ∑
=
= b −a
∫ a cos x + b
n →+∞ i =1
i.π
n a cos + b 0
if b < a
0
n
n
π
* I=∫
0
dx
if b > a
a cos x + b
π
dx
⇒I=∫
=
a cos x + b
(
0
2
=
( b2 − a 2 )
if b > a ⇒ I = ∫
0
1
( a − b)
)
. ( arctan ( +∞ ) − arctan 0 ) =
π
=
π
x −a + b
arctg tg .
2 a + b
2
2
0
b −a
2
)
dx
a cos x + b
x
tan +
2
−a + b
. ln
a+b
x
tan −
2
Dat f ( x i ) =
(
π
π
. =
2
b2 − a 2
b2 − a 2
2
a+b
−a + b
a+b
−a + b
π
= 0 tan π = +∞
2
0
1
π
i.π
, x i ∈ [ 0, π] , ∆x = , x i =
a cos x i + b
n
n
π
n
n
π
dx
⇒ lim In = lim ∑
= lim ∑ f ( x i ) .∆x = ∫
a cos x + b
n →+∞ i =0
n →+∞
n →+∞ i =1
i.π
0
n a cos + b
n
π
if b > a
2
2
= b −a
0
if b < a
π
*∫
cos x.dx
0 ( a cos x + b )
2
=
−a.π
(
3
2
2 2
b −a
)
with sign ( a + b ) = sign ( −a + b )
18
π
* I( a) = ∫
0
dx
if b > a
a cos x + b
π
dx
⇒I=∫
=
a cos x + b
(
0
2
=
( b2 − a 2 )
π
x −a + b
arctg tg .
2
2
2 a + b 0
b −a
2
)
. ( arctan ( +∞ ) − arctan 0 ) =
(
π
π
. =
2
b2 − a 2
b2 − a 2
2
)
'
π ( −1) ( a cos x + b ) '
π
−1
'
a .dx
⇒ I ( a ) = ∫ ( a cos x + b ) .dx = ∫
2
0
a 0 ( a cos x + b )
π
( −1) cos x.dx
2
0 ( a cos x + b )
=∫
π
⇒∫
cos x.dx
0 ( a cos x + b )
2
=
=
π
if b < a ⇒ I ( a ) = ∫
0
)
(
−a.π
(
3
b2 − a 2 2
( cos x ) n .dx
*∫
=0
n +1
0 ( a cos x + b )
π
)
(
'
1
π. − b2 − a 2
π
a.π
2
a
=
=
3
3
b2 − a 2 a
b2 − a 2 2
b2 − a 2 2
'
)
(
with b > a
with b < a
dx
1
=
a cos x + b ( a − b )
x
tan +
2
−a + b
. ln
a+b
x
tan −
2
'
π
π
( −1) cos x.dx
π
dx
'
=∫
tan = +∞ ⇒ I ( a ) = ∫
= 0,
2
2
0 a cos x + b
a 0 ( a cos x + b )
n
n
n
π
π
( n ) = ( −1) ( cos x ) .dx = 0 ⇒ ( cos x ) .dx = 0
⇒ I ( a )
∫
∫
n +1
n +1
0
)
( a cos x + b )
0 ( a cos x + b )
19
π
a+b
−a + b
=0
a+b
−a + b
0
2
b2
x a
.arctg tg +
b2 − a 2
2 b b 2 − a 2
dx
x a
a 2 − b2
* I=∫
=
tan + +
a sin x + b
2 b
1
b2
.ln
a 2 − b2
x a
a 2 − b2
tan + −
2 b
b2
with b2 − a 2 > 0
with b2 − a 2 < 0
dx
x
2t
2dt
Put t = tg ⇒ sin x =
, x = 2arctgt ⇒ dx =
a sin x + b
2
1 + t2
1 + t2
2dt
2dt
2
dt
1 + t2
⇒I=∫
=∫
= ∫
bt 2 + 2at + b b t 2 + 2at + 1
2at + b 1 + t 2
b
2
1+ t
2
dt
2
dt
= ∫
= ∫
where b2 − a 2 > 0
2
2
2
2
2
b a
b a
b −a
a
t + +1−
t + +
b
b
b
b2
* I=∫
(
)
t+a
2
1
b
⇒I= .
.arctg
b b2 − a 2
b2 − a 2
b2
b2
2
b2
b2
t + a
.arctg
= b. 2
b b2 − a 2
b − a2
dx
2
b2
x a
⇒I=∫
=
.arctg tg +
2
2
a sin x + b
2 b b 2 − a 2
b −a
2
If b2 − a 2 < 0 ⇒ a 2 − b 2 > 0 ⇒ I = ∫
b
dt
a a 2 − b2
t + −
b
b2
2
2
a
a 2 − b2
x a
a 2 − b2
t+ +
tan + +
b
2 b
2
1
1
b2
b2
= .
.ln
=
.ln
b
a 2 − b2
a
a 2 − b2
a 2 − b2
x a
a 2 − b2
2
t+ −
tan + −
b
2 b
b2
b2
b2
20
n
2π
=0
−n.π + 2i.π
i =1 n. a sin
+ b
n
∑
n →+∞
* lim
* I=
+π
∫
−π
dx
= 0 ( sin x là hàm le ) ,
a sin x + b
1
2π
, x i ∈ [ −π, π] , ∆x =
,
a sin x i + b
n
dat f ( x i ) =
n
2i.π − n.π + 2i.π
2π
x i = −π +
=
, ⇒ lim I = lim ∑
n
n
n →+∞
n →+∞ i =1
− n.π + 2i.π
n. a sin
+ b
n
n
+π
i =1
−π
∑ f ( x i ) .∆x = ∫
n →+∞
= lim
* I=∫
dx
sin x
Put t = tan
dx
=0
a sin x + b
x
2dt
⇒ x = 2 arctan t, dx =
,
2
1 + t2
sin ( x/2 )
x
x
1
sin x = 2sin .cos = 2
.
2
2
cos ( x/2 ) cos2 ( x/2 )
x
1
cos x = 2 cos2 − 1 = 2 −
2
cos2 ( x/2 )
=
(
) = 1 − t2
−1
2 tan ( x/2 )
=
1
.
cos2 ( x/2 )
tan 2 ( x/2 ) + 1
=
2t
1 + t2
−1
2 − tan 2 ( x/2 ) + 1
tan 2 ( x/2 ) + 1
⇒I = ∫
1 + t2
dx
2dt
2t
dt
x
=∫
÷
= ∫ = ln t = ln tan + C
sin x
t
2
1 + t2 1 + t2
at 2 + 2t + a
sin x.dx
2t
2dt 2t
4t.dt
* I=∫
=
.
÷
+a =
÷
2
2
sin x + a ∫ t 2 + 1 t 2 + 1 t 2 + 1 ∫ 2
t +1
t +1
)
(
=∫
4t.dt
, Put
4t
=
A
+
B
( t2 + 1) ( at2 + 2t + a ) ( t2 + 1) ( at2 + 2t + a ) t2 + 1 at2 + 2t + a
⇒ A ( at 2 + 2t + a ) + B ( 1 + t 2 ) = 4t ⇒ ( a.A + B ) .t 2 = 0, 2A.t = 4t, a.A + B = 0
⇒ A = 2, a.A + B = 2a + B = 0 ⇒ B = −2a
21
⇒I=∫
4t.dt
( t2 + 1) ( at2 + 2t + a )
= 2.arctan t − 2 ∫
* I=∫
=∫
2dt
t2 + 1
− 2a ∫
dt
at 2 + 2t + a
dt
2t
t2 + + 1
a
tan ( x/2 ) .a + 1
sin x.dx
a
=x−
.arctan
2
2
sin x + a
a −1
a −1
I1 = −2 ∫
( where
a > 1)
dt
dt
dt
= −2 ∫
= −2 ∫
2
2
2t
1
a2 − 1
1
t.a + 1
t2 + + 1
t + +1− 2
+ 2
a
a
a
a
a
a2 − 1
1
a
=
M
a2
a2 − 1
dt
1
t.a + 1
⇒ I1 = −2 ∫
= − .arctan
2
M
a.M
t.a + 1
2
+M
a
2
If a > 1 or a < −1 ⇒ a − 1 > 0 ⇒
= M2 ⇒
t.a + 1
t.a + 1
a
a
=−
.arctan
.
.arctan
=−
a
2
2
2
2
a −1
a −1
a −1
a −1
a
t.a + 1
1
dt
a
= 2.arctan t −
.arctan
2
2
2 ∫ t 2 + 2t + 1
a −1
a −1
a
tan ( x/2 ) .a + 1
x
a
= 2.arctan tan −
.arctan
2
2
2
a −1
a −1
⇒ I = 2.arctan t −
⇒I=∫
tan ( x/2 ) .a + 1
sin x.dx
a
=x−
.arctan
2
2
sin x + a
a −1
a −1
π
( where
a > 1)
tan ( π /2 ) .a + 1
tan 0.a + 1
sin x.dx
a
= π−
. arctan
− arctan
2
2
2
sin x + a
a −1
a −1
a − 1
0
⇒J=∫
π
1
= π−
. − arctan
2
2
2
a −1
a − 1
a
22
sin x.dx
a
* I=∫
=x−
sin x + a
1 − a2
I1 = −2 ∫
( where
− 1 < a < 1)
dt
dt
dt
= −2 ∫
= −2 ∫
2
2
2t
1
a2 − 1
1
t.a + 1
t2 + + 1
t + +1−
+
a
a
a
a2
a2
2
If a < 1 ⇒ a − 1 < 0 ⇒
⇒ I1 = −2 ∫
=
2
ln tan ( x/2 ) .a + 1 + 1 − a
2
tan ( x/2 ) .a + 1 − 1 − a
a2 − 1
a2
dt
2
t.a + 1
2
−M
a
1 − a2
= −M ⇒ M =
a
2
=−
1 t.a + 1
t.a + 1
. ln
− M − ln
+M
M a
a
. ln t.a + 1 + 1 − a 2 .a −1 − ln t.a + 1 − 1 − a 2 .a −1
1 − a2
a
2
ln t.a + 1 + 1 − a
=
1 − a 2 t.a + 1 − 1 − a 2
a
,
1
dx
dx
dx
∫ x 2 − a 2 = 2a ∫ x − a − ∫ x + a
dt
a t.a + 1 + 1 − a 2
⇒ I = 2.arctan t − 2 ∫
= 2.arctan t −
ln
2
2 2t
1 − a t.a + 1 − 1 − a 2
t + +1
a
2
x
a tan ( x/2 ) .a + 1 + 1 − a
= 2.arctan tan −
ln
2
2
1 − a tan ( x/2 ) .a + 1 − 1 − a 2
sin x.dx
a
⇒I=∫
=x−
sin x + a
1 − a2
π
sin x.dx
a
⇒J=∫
= π−
sin x + a
1 − a2
0
= π+
a
1− a
2
.ln
1 + 1 − a2
1− 1− a
2
2
ln tan ( x/2 ) .a + 1 + 1 − a
2
tan ( x/2 ) .a + 1 − 1 − a
2
ln1 − ln 1 + 1 − a
1 − 1 − a2
( where a < 1)
Check the result
23
( where
− 1 < a < 1)
'
tan ( x/2 ) .a + 1
x
a
2.arctan tan −
.arctan
2
2
2
a −1
a − 1 x
2
x
= 2. tan + 1
2
−1
x
. tan
2
'
2
tan ( x/2 ) .a + 1
a
−
.
+ 1
a 2 − 1
a2 − 1
= 2. ( cos ( x/2 ) ) . ( cos ( x/2 ) )
2
−2
−1
tan ( x/2 ) .a + 1
.
2
a −1
. ( ( x/2 ) )
'
tan ( x/2 ) .a 2 + 2 tan ( x/2 ) .a + 1 + a 2 − 1
a
−
.
2
a −1
a2 − 1
2
x
x
2 2
= 1 − a . a tan + 1 + 2a. tan
2
2
−1
x
. cos
2
2
2
x
2 a + 2a.sin ( x/2 ) .cos ( x/2 )
= 1− a .
. cos
2
2
cos ( x/2 )
= 1 − a 2 . a 2 + a.sin x
22 / I = ∫
=∫
=∫
= 1−
dx
dx
=∫
cos x
sinπ/2 −
( x
d ( xπ/2
+
sin ( xπ/2
+
* I=∫
−1
)
)
'
−1
−2
x
.
tan 2
a2 − 1
a
x
.
2
−1
a
a + sin x − a
sin x
=
=
( a + sin x ) ( a + sin x ) a + sin x
)
=∫
= ln tgπ/2 +
( π/4
)
dx
sinπ/2− (x −
(π
))
+
C
cos ( x/2 ) .d ( x/2 )
dx
dx
=∫
=∫
sin x
2sin ( x/2 ) .cos ( x/2 )
sin ( x/2 ) .cos2 ( x/2 )
d ( tan ( x/2 ) )
tan ( x/2 )
= ln tan
* I = ∫ tan x.dx = ∫
'
x
+C
2
−d ( cos x )
sin x.dx
=∫
= − ln ( cos x )
cos x
cos x
24
'
* I=∫
tan ( x/2 ) a − 1
cos x.dx
2a
=x−
.arctan
where a < −1 or a > 1
2
cos x + a
a +1
a −1
* I=∫
cos x.dx
cos x + a
Put t = tan
x
2dt
⇒ x = 2arctan t, dx =
,
2
2
1+ t
x
1
cos x = 2 cos2 − 1 = 2 −
2
cos2 ( x/2 )
=
(
) = 1 − t2 ⇒ I =
2 − tan 2 ( x/2 ) + 1
tan 2 ( x/2 ) + 1
1 + t2
1
.
cos2 ( x/2 )
−1
cos x.dx
2dt 1 − t 2 1 − t 2
=∫
.
+a
. 2
∫ cos x + a t 2 + 1 t 2 + 1 t + 1
)
)
(
(
(
)
−1
2 1 − t 2 dt 1 − t 2 + a.t 2 + a −1
2 1 − t 2 dt
=∫
.
=∫
2
2
2
t +1
t 2 + 1 t 2 ( a − 1) + a + 1
t +1
=∫
( t + 1) ( t
2
2dt
2
( a − 1) + a + 1)
2
Put
)(
(
−∫
=
( t + 1) ( t
2
A.t + B
+
2t 2 .dt
2
( a − 1) + a + 1)
)
,
C.t + D
( t2 + 1) ( t2 ( a − 1) + a − 1) t2 + 1 t2 ( a − 1) + a + 1
⇒ ( A.t + B) ( t 2 ( a − 1) + a + 1) + ( C.t + D ) ( t 2 + 1) = 2
⇒ t 3 ( a.A − A + C ) = 0, t ( a.A − A + C ) = 0, t 2 ( a.B − B + D ) = 0, a.B + B + D = 2
⇒ A = C = 0, 2B = 2 ⇒ B = 1, a + 1 + D = 2 ⇒ D = 1 − a
⇒ I1 = ∫
=∫
2.dt
( t2 + 1) ( t2 ( a − 1) + a + 1)
dt
t2 + 1
+∫
( 1 − a ) .dt = arctan t −
dt
∫ 2 a +1
t 2 ( a − 1) + a + 1
t +
a −1
25