Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (93.87 KB, 3 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
- Tên bài giảng: Phương trình đường thẳng
- Thời lượng: 1 tiết
- Đối tượng học sinh: Trung bình - Khá.
<b>2.</b> <b>Chuẩn đầu ra</b>
<i>Sau khi kết thúc tiết học này, học sinh có thể:</i>
2.1. Kiến thức:
- [CĐR1] Nhận dạng được vecto pháp tuyến của đường thẳng.
- [CĐR2] Định nghĩa được phương trình tổng quát.
2.2. Kỹ năng:
- [CĐR3] Mơ tả phương trình tổng qt khi biết một điểm và vecto pháp tuyến.
- [CĐR4] Thể hiện phương trình đoạn chắn trong trường hợp cần thiết.
2.3. Thái độ:
- [CĐR4] Cẩn thận trong lập luận và tính tốn.
- [CĐR5] Có thái độ nghiêm túc, tích cực tham gia vào quá trình học tập.
<b>3.</b> <b>Phương pháp giảng dạy:</b>
- [1] Thuyết giảng chủ động
- [2] Hỏi đáp
- [3] Thảo luận nhóm.
<b>4.</b> <b>Tài liệu</b>
4.1. Sách giáo khoa
-[TL1]
-[TL2]
4.2. Tài liệu tham khảo
-[TL1]
-[TL2]
<b>5.</b> <b>Nội dung chi tiết</b>
<b>Thời</b>
<b>lượng</b> <b>Nội dung</b> <b>Phươngpháp</b> <b>Hoạt động chi tiết</b> <b>liệuTài</b>
<b>Chuẩn</b>
<b>đầu ra</b>
<b>Giáo viên</b> <b>Học sinh</b>
15p <b>1. Vectơ </b>
<b>pháp </b>
<b>tuyến của </b>
<b>đường </b>
[1] - Viết bài tập lên bảng:
Cho phương trình đường
thẳng d:
- Chép đề vào tập. [CĐR1
<b>thẳng</b> Và vecto n = (3,-2). Hãy
chứng minh n vng góc
với vecto chỉ phương của d?
- Cho suy nghĩ 1 phút và sau
đó gọi 1 học sinh lên bảng.
- Mời một học sinh đọc định
nghĩa.
- Ghi 2 tính chất lên bảng.
+Nếu n là vecto pháp tuyến
thì k.n cũng là vecto pháp
tuyến.
+Một đường thẳng hoàn
toàn xác định nếu biết một
điểm và một vecto chỉ
phương.
- Suy nghĩ 1 phút và xung
phong lên bảng làm bài.
- Bài làm mong đợi ở học
sinh.
Giải:
Vecto chỉ phương của
đường thẳng d là: u = (2,3).
Vì n.u = 3.2 + (-2).3 = 0
Nên n vng góc với u.
-Đứng dậy đọc định nghĩa.
-Ghi nhận xét vào tập.
15p <b>2. Phương </b>
<b>trình tổng </b>
<b>quát của </b>
<b>đường </b>
<b>thẳng</b>
- Ghi đề bài lên bảng:
Trong mặt phằng tọa độ
Oxy cho đường thẳng denta
đi qua M0( x0; y0)và nhận
vecto n(a,b) làm vecto pháp
tuyến. Viết phương trình
đường thẳng đi qua M0(x0;
y0) và có vectơ pháp tuyến
n(a,b).
- Gọi từng em lên bảng và
+Nếu M(x,y) thuộc denta thì
có nhận xét gì về 2 vecto
MM0 và n(a,b).
+Ghi biểu thức tọa độ của
tích vơ hướng.
-Chép đề vào tập.
- Từng học sinh lên bảng làm
bài tập.
+MM0 = (x – x0; y – y0).
+MM0 vng n.
+Vì MM0 vng với n nên
tích MM0.n = 0.
+Định nghĩa:
Phương trình ax + by + c =
0 với a,b không đồng thời
bằng 0, được gọi là phương
trình tổng quát của đường
+Nhận xét: Nếu đường
thẳng denta có phương trình
là ax+by+c = 0 thì denta có
vecto pháp tuyến là n = (a;b)
và có vecto chi phương là u
= (-b;a).
+MM0.n = a(x-x0) + b(y-y0)
=> ax + by + c = 0 với c =
-ax0 – by0.
- Ghi định nghĩa vào vở.
15p <b>3. Ví dụ</b>
- Viết đề lên bảng.
a. Lập phương trình tổng
quát đi qua 2 điểm A(2,2)
và B(4,3).
b. Lập phương trình tổng
qt của đường thẳng đi qua
C(3,4) và vng góc với d:
2x-y + 3 = 0.
- Cho 2 phút suy nghĩ và
cho xung phong lên bảng
làm(nếu khơng ai xung
phong thì chỉ định).
- Chép đề vào tập.
- Xung phong lên bảng làm
bài.