Tải bản đầy đủ (.pdf) (32 trang)

Hiệu chỉnh tìm nghiệm chung của một họ hữu hạn phương trình với ánh xạ liên tục lipschitz và j đơn điệu

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (518.88 KB, 32 trang )

✣❸■ ❍➴❈ ❚❍⑩■ ◆●❯❨➊◆
❚❘×❮◆● ✣❸■ ❍➴❈ ❑❍❖❆ ❍➴❈

..

✖✖✖✖✖✖✖♦✵♦✖✖✖✖✖✖✕

❍■➏❯ ❈❍➓◆❍ ❚➐▼ ◆●❍■➏▼ ❈❍❯◆●
❈Õ❆ ▼❐❚ ❍➴ ❍Ú❯ ❍❸◆ P❍×❒◆● ❚❘➐◆❍
❱❰■ ⑩◆❍ ❳❸ ▲■➊◆ ❚Ö❈ ▲■P❙❈❍■❚❩ ❱⑨ ❏✲✣❒◆ ✣■➏❯
▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈
❈❤✉②➯♥ ♥❣➔♥❤✿ ❚♦→♥ Ù♥❣ ❉ư♥❣
▼➣ sè✿

✻✵✳✹✻✳✵✶✳✶✷

❍å❝ ✈✐➯♥ t❤ü❝ ❤✐➺♥✿
▲ỵ♣✿

●✐↔♥❣ ✈✐➯♥ ữợ



ữớ

◆●❯❨➊◆ ✲ ✷✵✶✹


▼ư❝ ❧ư❝
▼ư❝ ❧ư❝
▲í✐ ❝↔♠ ì♥


▼ët sè ❦➼ ❤✐➺✉ ✈➔ ❝❤ú ✈✐➳t t➢t
▼ð ✤➛✉
✶ ❈→❝ ❦❤→✐ ♥✐➺♠ ✈➔ ✈➜♥ ✤➲ ❝ì ❜↔♥
✶✳✶

❑❤æ♥❣ ❣✐❛♥ ❍✐❧❜❡r ✈➔ ❇❛♥❛❝❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✳✷

❇➔✐ t♦→♥ ✤➦t ❦❤æ♥❣ ❝❤➾♥❤

✶✳✸


✐✐
✐✐✐




✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✶

✶✳✷✳✶

❑❤→✐ ♥✐➺♠ ❜➔✐ t♦→♥ ✤➦t ❦❤æ♥❣ ❝❤➾♥❤ ✳ ✳ ✳ ✳ ✳ ✳

✶✶


✶✳✷✳✷

❱➼ ❞ư ✈➲ ❜➔✐ t♦→♥ ✤➦t ❦❤ỉ♥❣ ❝❤➾♥❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✷

P❤÷ì♥❣ ♣❤→♣ ❤✐➺✉ ❝❤➾♥❤ ❚✐❦❤♦♥♦✈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✹

✷ P❤÷ì♥❣ ữỡ tr t
ợ t tû ❏✲✤ì♥ ✤✐➺✉ ✈➔ ❧✐➯♥ tư❝ ▲✐♣s❝❤✐t③ tr➯♥ ❦❤ỉ♥❣
❣✐❛♥ ❇❛♥❛❝❤
✶✻
✷✳✶

❚➻♠ ♥❣❤✐➺♠ ❝❤✉♥❣ ❝❤♦ ♠ët ❤å ♣❤÷ì♥❣ tr➻♥❤ t♦→♥ tû
✤ì♥ ✤✐➺✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✷✳✷

✶✻

◆❣❤✐➺♠ ❝❤✉♥❣ ❝❤♦ ♠ët ❤å ♣❤÷ì♥❣ tr➻♥❤ t♦→♥ tû ❏✲✤ì♥
✤✐➺✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✾

❑➳t ❧✉➟♥
✷✻

❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✼



▲á✐ ❝↔♠ ì♥
❚r♦♥❣ s✉èt q✉→ tr➻♥❤ ❧➔♠ ❧✉➟♥ ✈➠♥✱ tỉ✐ ổ ữủ sỹ ữợ
ú ù tú ❝õ❛ ●❙✳❚❙✳ ◆❣✉②➵♥ ❇÷í♥❣ ✭❱✐➺♥ ❈ỉ♥❣
♥❣❤➺ t❤ỉ♥❣ t✐♥✱ ❱✐➺♥ ❍➔♥ ❧➙♠ ❑❤♦❛ ❤å❝ ✈➔ ❈æ♥❣ ♥❣❤➺ ❱✐➺t ◆❛♠✮✳
❚æ✐ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ ✤➳♥ ❚❤➛② ✈➔ ❦➼♥❤ ❝❤ó❝
❚❤➛② ❝ị♥❣ ❣✐❛ ✤➻♥❤ ❧✉ỉ♥ ❧✉ỉ♥ ♠↕♥❤ ❦❤ä❡✳
❚ỉ✐ t ỡ qỵ t ổ ❞↕② t↕✐ ✣↕✐ ❤å❝
❚❤→✐ ◆❣✉②➯♥ ✈➔ t↕✐ ❱✐➺♥ ❚♦→♥ ❤å❝✱ ❱✐➺♥ ❍➔♥ ❧➙♠ ❑❤♦❛ ❤å❝ ✈➔ ❈æ♥❣
♥❣❤➺ ❱✐➺t ◆❛♠ ✤➣ ♠❛♥❣ ❧↕✐ ❝❤♦ tæ✐ ♥❤✐➲✉ ❦✐➳♥ t❤ù❝ ❜ê ➼❝❤ tr♦♥❣ ❦❤♦❛
❤å❝ ✈➔ q✉❛♥ t➙♠ ❣✐ó♣ ✤ï tỉ✐ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣✱ ♥❣❤✐➯♥ ❝ù✉✳
❚ỉ✐ ❝ơ♥❣ ①✐♥ ❝↔♠ ì♥ ❝→❝ ỗ ổ ú ù tổ tr sốt
tớ ❤å❝ t➟♣ t↕✐ ✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥ ✈➔ tr♦♥❣ q✉→ tr➻♥❤ ❤♦➔♥
t❤➔♥❤ ❧✉➟♥ ✈➠♥ ♥➔②✳
❚❤→✐ ◆❣✉②➯♥✱ t❤→♥❣ ✾ ✲ ✷✵✶✹
◆❣÷í✐ ✈✐➳t ▲✉➟♥ ✈➠♥

◗✉→❝❤ ❚❤à ❨➳♥

✐✐


▼ët sè ❦➼ ❤✐➺✉ ✈➔ ❝❤ú ✈✐➳t t➢t
E∗

❑❤æ♥❣ ❣✐❛♥ ❧✐➯♥ ❤đ♣ ❝õ❛ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ E ✳


A∗ : Y ∗ → X ∗ ❚♦→♥ tû ✤è✐ ♥❣➝✉ ❝õ❛ t♦→♥ tû t✉②➳♥ t➼♥❤ A : X → Y ✳
I

❚♦→♥ tû ✤ì♥ ✈à

D(A)

▼✐➲♥ ①→❝ ✤à♥❤ ❝õ❛ t♦→♥ tû A✳

R(A)

▼✐➲♥ ↔♥❤ ❝õ❛ t♦→♥ tû A✳

A−1

❚♦→♥ tû ♥❣÷đ❝ ❝õ❛ t♦→♥ tû A✳

x, y

❚➼❝❤ ✈ỉ ữợ ừ x y tr ổ rt

x

ừ x tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ E ✳

E

❚➟♣ ré♥❣✳



xn

x

❉➣② xn ❤ë✐ tư ②➳✉ tỵ✐ x✳

xn → x

❉➣② xn ❤ë✐ tư ♠↕♥❤ x✳

θ

P❤➛♥ tû ❦❤æ♥❣ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳

✐✐✐


▼ð ✤➛✉
◆❤✐➲✉ ✈➜♥ ✤➲ tr♦♥❣ t❤ü❝ t➳ ❝❤ó♥❣ t❛ ❣➦♣ ♣❤↔✐ ♥❤÷ ❦❤♦❛ ❤å❝✱ ❝ỉ♥❣
♥❣❤➺✱ ❦✐♥❤ t➳✱ . . . tỗ t ởt ợ t ❦❤æ♥❣ ê♥
✤à♥❤ t❤❡♦ ♥❣❤➽❛ ♠ët t❤❛② ✤ê✐ ♥❤ä ❝õ❛ ❞ú ❧✐➺✉ ✤➛✉ ✈➔♦ s➩ ❞➝♥ ✤➳♥
♥❤ú♥❣ t❤❛② ✤ê✐ ❧ỵ♥ ❝õ❛ ❞ú ❧✐➺✉ ✤➛✉ r❛ ✭♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥✮✱ t❤➟♠
❝❤➼ ❝á♥ ❧➔♠ ❝❤♦ ❜➔✐ t♦→♥ trð ❧➯♥ ✈ỉ ♥❣❤✐➺♠✳ ◆❣÷í✐ t❛ ♥â✐ ♥❤ú♥❣ ❜➔✐
t♦→♥ ✤â ❦❤æ♥❣ ❝❤➼♥❤ q✉② ❤❛② ✤➦t ❦❤æ♥❣ ❝❤➾♥❤✳ ❱➻ ✈➟② ❝➛♥ ♣❤↔✐ ❝â
♥❤ú♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ê♥ ✤à♥❤ ❝→❝ ❜➔✐ t♦→♥ ✤➦t ❦❤æ♥❣ ❝❤➾♥❤ s❛♦ ❝❤♦
❦❤✐ s❛✐ sè ❝õ❛ ❞ú ❧✐➺✉ ❝➔♥❣ ♥❤ä t❤➻ ♥❣❤✐➺♠ ①➜♣ ①➾ t ữủ
ợ ú ừ t t t
t q trồ t ừ ỵ tt t
ồ ữợ t ❞➔♥❤ ♣❤➛♥ ❧ỵ♥ t❤í✐ ❣✐❛♥ ✈➔ ❝ỉ♥❣ sù❝
❝õ❛ ♠➻♥❤ ❝❤♦ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❤✐➺✉ ❝❤➾♥❤ ✤➸ ❣✐↔✐ ❝→❝

❜➔✐ t♦→♥ ✤➦t ❦❤æ♥❣ ❝❤➾♥❤✳ ❚r♦♥❣ ❦❤✉æ♥ ❦❤ê ❧✉➟♥ ✈➠♥ ♥➔② ❝❤ó♥❣ tỉ✐
①✐♥ ✤÷đ❝ tr➻♥❤ ❜➔② ✤➲ t➔✐✿

✑❍✐➺✉ ❝❤➾♥❤ t➻♠ ừ ởt ồ

ỳ ữỡ tr ợ ①↕ ❧✐➯♥ tư❝ ▲✐♣s❝❤✐t③ ✈➔

J ✲✤ì♥

✤✐➺✉✑ ✳

▲✉➟♥ ✈➠♥ ✤÷đ❝ tê♥❣ ủ tứ ừ ữớ ũ
ợ ở sü ◆❣✉②➵♥ ✣➻♥❤ ❉ơ♥❣✳
▼ư❝ ✤➼❝❤ ❝õ❛ ❧✉➟♥ ✈➠♥ ♥➔② ❧➔ sû ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❤✐➺✉ ❝❤➾♥❤
❇r♦✇❞❡r✲❚✐❦❤♦♥♦✈ t➻♠ ♥❣❤✐➺♠ ❝❤✉♥❣ ❝õ❛ ởt ồ ỳ ữỡ
tr ợ t tỷ J ỡ ✤✐➺✉ ✈➔ ❧✐➯♥ tư❝ ▲✐♣s❝❤✐t③ tr➯♥ ❦❤ỉ♥❣ ❣✐❛♥
❇❛♥❛❝❤✳ ❚r♦♥❣ ✤â ợ t ữỡ t ừ
ồ ỳ ❤↕♥ ♣❤÷ì♥❣ tr➻♥❤ ❦❤✐ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t♦→♥ tû ❝❤➾ ❝â ♥❤✐➵✉ ð
✈➳ ♣❤↔✐ ✈➔ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ❦❤✐ ❝↔ ✈➳ ♣❤↔✐ ✈➔ t♦→♥ tû ✤➲✉ ❝â ♥❤✐➵✉✳



◆❣♦➔✐ ♣❤➛♥ ♠ð ✤➛✉✱ ❦➳t ❧✉➟♥✱ ❞❛♥❤ ♠ö❝ ❝→❝ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦✱ ❜è
❝ư❝ ❝õ❛ ❧✉➟♥ ✈➠♥ ✤÷đ❝ tr➻♥❤ ❜➔② tr♦♥❣ ❤❛✐ ❝❤÷ì♥❣✳
❈❤÷ì♥❣ ✶✳ ❚r➻♥❤ ❜➔② ❝→❝ ❦❤→✐ ♥✐➺♠ ❝ì ❜↔♥ ✈➲ ❦❤æ♥❣ ❣✐❛♥ ❍✐❧❜❡rt
✈➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳ ❚✐➳♣ t❤❡♦ ợ t t t ổ
ỗ tớ ụ tr ữỡ
ữỡ tr ợ t tû ✤ì♥ ✤✐➺✉✳
❈❤÷ì♥❣ ✷✳ P❤÷ì♥❣ ♣❤→♣ t➻♠ ♥❣❤✐➺♠ ❝❤✉♥❣ ❝❤♦ ♠ët ❤å ♣❤÷ì♥❣
tr➻♥❤ t♦→♥ tû ✤ì♥ ✤✐➺✉✱ ❤✐➺✉ ❝❤➾♥❤ ❝❤♦ ữỡ tr ợ t tỷ


J ỡ tử st tr ổ
ỗ t ❝â ❝❤✉➞♥ ❦❤↔ ✈✐ ●❛t❡❛✉① ✤➲✉✳
▲✉➟♥ ✈➠♥ ✤÷đ❝ ❤♦➔♥ t❤➔♥❤ t trữớ ồ ồ ồ
ữợ sỹ ữợ ừ ữớ ũ
t ✤➣ ❤➳t sù❝ ❝è ❣➢♥❣ ♥❤÷♥❣ ❞♦ ✈➜♥ ✤➲ ♥❣❤✐➯♥ ❝ù✉ ❧➔ ❦❤→ ♣❤ù❝ t↕♣
✈➔ ❦✐♥❤ ♥❣❤✐➺♠ ♥❣❤✐➯♥ ❝ù✉ ❝á♥ ❤↕♥ ❝❤➳ ♥➯♥ ❦❤æ♥❣ tr→♥❤ ❦❤ä✐ t❤✐➳✉
sât✳ ❚r♦♥❣ q✉→ tr➻♥❤ t ụ ữ ỷ ỵ ❝❤➢♥
❦❤æ♥❣ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ s❛✐ sât ♥❤➜t ✤à♥❤✳ ❚→❝ ❣✐↔ rt
ữủ ỳ ỵ õ õ ừ qỵ t❤➛② ❝ỉ ✈➔ ❝→❝ ❜↕♥ ✤➸ ❧✉➟♥ ✈➠♥
✤÷đ❝ ❤♦➔♥ t❤✐➺♥ ❤ì♥✳




❈❤÷ì♥❣ ✶
❈→❝ ❦❤→✐ ♥✐➺♠ ✈➔ ✈➜♥ ✤➲ ❝ì ❜↔♥
❈❤÷ì♥❣ ♥➔② ỗ ử tr ởt số ỡ ữủ sỷ
ử q tợ ở ự ❝õ❛ ✤➲ t➔✐✳ ▼ư❝ ✶✳ ●✐ỵ✐ t❤✐➺✉
❝→❝ ❦❤→✐ ♥✐➺♠✱ t➼♥❤ ❝❤➜t✱ sü ❤ë✐ tư tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ❍✐❧❜❡rt ✈➔ ❦❤ỉ♥❣
❣✐❛♥ ❇❛♥❛❝❤✱ ♥❣♦➔✐ r❛ ❝á♥ ♠ët sè ✤à♥❤ ♥❣❤➽❛✱ ❜ê ✤➲✱ ❝➛♥ sû ❞ư♥❣ ✤➸
❝❤ù♥❣ ♠✐♥❤ ❝→❝ ❦➳t q✉↔ tr♦♥❣ ❝❤÷ì♥❣ ✷✳ ▼ö❝ ✷✳ ❑❤→✐ ♥✐➺♠ ✈➔ ✈➼ ❞ö ✈➲
❜➔✐ t♦→♥ ✤➦t ❦❤ỉ♥❣ ❝❤➾♥❤✳ ▼ư❝ ✸✳ ❚r➻♥❤ ❜➔② ♣❤÷ì♥❣ ♣❤→♣ ❤✐➺✉ ❝❤➾♥❤
❚✐❦❤♦♥♦✈ ❣✐↔✐ ❜➔✐ t♦→♥ ✤➦t ❦❤æ♥❣ ❝❤➾♥❤✳ ❈→❝ ❦✐➳♥ t❤ù❝ tr➻♥❤ ❜➔② tr♦♥❣
❝❤÷ì♥❣ ♥➔② ✤÷đ❝ t❤❛♠ ❦❤↔♦ ❝❤õ ②➳✉ tø ❝→❝ t➔✐ ❧✐➺✉ ❬✶❪✱ ❬✻❪ ✈➔ ❬✼❪✳

✶✳✶ ❑❤æ♥❣ ❣✐❛♥ ❍✐❧❜❡r ✈➔ ❇❛♥❛❝❤
• ❑❤ỉ♥❣ ❣✐❛♥ ❍✐❧❜❡rt

✣à♥❤ ♥❣❤➽❛ ✶✳✶✳ ❑❤ỉ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ E ✤÷đ❝ ❣å✐ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥

t✐➲♥ ❍✐❧❜❡rt ❤❛② ❝á♥ ồ ổ õ t ổ ữợ tr
✤à♥❤ ♠ët ❤➔♠ t❤ü❝ ❤❛✐ ❜✐➳♥✱ ❦➼ ❤✐➺✉

x, y

✈➔ ✤÷đ❝ ồ t ổ

ữợ ừ tọ ♠➣♥ ✤✐➲✉ ❦✐➺♥ s❛✉✿
✶✳ ❱ỵ✐ ♠é✐

x, y ∈ E, x, y = y, x

✷✳ ❱ỵ✐ ♠é✐

x, y, z ∈ E, x + y, z = x, z + y, z

✸✳ ❱ỵ✐ ♠é✐

x, y ∈ E

✹✳ ❱ỵ✐ ♠é✐

x ∈ E, x, x ≥ 0

✈ỵ✐ sè t❤ü❝

β




❜➜t ❦➻





βx, y = β x, y

x, x = 0

✈➔

E

❦❤✐ ✈➔ ❝❤➾ ❦❤✐



x = 0✳


❱ỵ✐ ❤➔♠ x

= x, x

1/2

t❤➻ E trð t❤➔♥❤ ♠ët ❦❤ỉ♥❣

ổ ợ t ổ ữợ ừ ữủ ồ ổ

rt

ã ổ

❑❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ❧➔ ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ❊
tr♦♥❣ ✤â ù♥❣ ✈ỵ✐ ♠é✐ ♣❤➛♥ tû

x∈E

t❛ ❝â ♠ët sè

x

❣å✐ ❧➔ ❝❤✉➞♥

❝õ❛ ①✱ t❤ä❛ ♠➣♥ ❝→❝ ✤✐➲✉ ❦✐➺♥ s❛✉✿
✶✳

x > 0, ∀x = 0, x = 0 ⇔ x = 0,

✷✳

x+y ≤ x

✸✳

αx = |α|

+


y , ∀x, y ∈ E ✱

✭❜➜t ✤➥♥❣ t❤ù❝ t❛♠ ❣✐→❝✮

x , ∀x ∈ E, α ∈ R.

❑❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ✤➛② ✤õ ❣å✐ ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳

❱➼ ❞ư ✶✳✶✳ ❑❤ỉ♥❣ ❣✐❛♥ Lp[a, b] ✈ỵ✐ 1 ≤ p < ∞ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤
✈ỵ✐ ❝❤✉➞♥✿

b
1

|ϕ(x)|p dx) p , ϕ ∈ Lp [a, b],

ϕ =(
a

❱➼ ❞ư ✶✳✷✳ ❑❤ỉ♥❣ ❣✐❛♥ ❊✉❝❧✐❞❡ n✲❝❤✐➲✉ Rn ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤✳
❚r♦♥❣ ❦❤æ♥❣ ❣✐❛♥ Rn ❝❤✉➞♥ ✈➔ ❦❤♦↔♥❣ ❝→❝❤ ✤÷đ❝ ①→❝ ✤à♥❤ ♥❤÷ s❛✉✿
n

|xi |2

x =

1/2

,


i=1

d(x, y) = x − y ,
x = (x1 , x2 , . . . , xn ) ∈ Rn , y = (y1 , y2 , . . . , yn ) ∈ Rn .

✣à♥❤ ♥❣❤➽❛ ✶✳✸✳ ●✐↔ sû ❊ ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ t❤ü❝ ✈➔
❦❤æ♥❣ ❣✐❛♥ ✤è✐ ♥❣➝✉✳ ✣➸ ❝❤♦ ✤ì♥ ❣✐↔♥✱ ❝❤✉➞♥ ❝õ❛ ❊ ✈➔
❤✐➺✉

.

õ ữủ ỵ

t✉②➳♥ t➼♥❤ ❧✐➯♥ tö❝
✈➔♦

E∗

x∗ , x .

x∗ ∈ E ∗ x E



ữủ ỵ

ợ tr ừ

ởt ①↕


✤÷đ❝ ❣å✐ ❧➔ ♠ët →♥❤ ①↕ ✤è✐ ♥❣➝✉ ❝❤✉➞♥ t➢❝ ❝õ❛



E∗

E∗

E

J

♥➳✉✿



E


x, j(x) ❂

x ✳ j(x) ✱

✈➔

x = j(x) , ∀x ∈ X, j(x) ∈ J(X).
• ❙ü ❤ë✐ tư tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤
❚r♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤


x ∈ E✱

♥➳✉ ✈ỵ✐ ♠å✐

E✱

x∗ ∈ E ∗

❞➣②

{xn } ⊂ E

✤÷đ❝ ❣å✐ ❧➔ ❤ë✐ tư ②➳✉ tỵ✐

✱ t❛ ❝â✿

lim xn , x∗ = x, x∗ ,

n→∞

❉➣② ❤ë✐ tư ②➳✉ ✤÷đ❝ ❦➼ ❤✐➺✉✿
✤÷đ❝ ❣å✐ ❧➔ ❤ë✐ tư ♠↕♥❤ tỵ✐

xn − x → 0

❦❤✐

xn

x∈E


x

❦❤✐

n → ∞✳

❉➣②

{xn } ⊂ E

♥➳✉ ♥â ❤ë✐ tư t❤❡♦ ❝❤✉➞♥✱ tù❝ ❧➔

n → ∞✳

• ❑❤æ♥❣ ❣✐❛♥ ♣❤↔♥ ①↕

✣à♥❤ ♥❣❤➽❛ ✶✳✹✳ ●✐↔ sû ❊ ❧➔ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ tr➯♥ ❘✱ E ∗ ❧➔
❦❤æ♥❣ ❣✐❛♥ ❧✐➯♥ ❤ñ♣ ❝õ❛ ❊ ✈➔ ❣å✐

E ∗∗ = L(E ∗ , R)

❤đ♣ t❤ù ❤❛✐ ❝õ❛ ❊✳ ❚❛ ❝❤♦ t÷ì♥❣ ù♥❣ ✈ỵ✐ ♠é✐
t✉②➳♥ t➼♥❤ ❧✐➯♥ tư❝

x∗∗

tr➯♥

E ∗∗


❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❧✐➯♥

x∈E

♠ët ♣❤✐➳♠ ❤➔♠

♥❤í ❤➺ t❤ù❝

x∗∗ , f = f, x , ∀f ∈ X ∗∗ ,
ð ✤➙②
t↕✐

f, x

x ∈ E✳

❧➔ ❦➼ ❤✐➺✉ ❣✐→ trà ♣❤✐➳♠ ❤➔♠ t✉②➳♥ t➼♥❤ ❧✐➯♥ tö❝
❚❛ ❝â

x = x∗∗ ✳

✣➦t

h(x) = x∗∗ ✱

♥➳✉

f ∈ E∗


h : E → E ∗∗

❧➔

t♦➔♥ →♥❤ t❤➻ ❦❤ỉ♥❣ ❣✐❛♥ ❊ ✤÷đ❝ ❣å✐ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ♣❤↔♥ ①↕✳

❱➼ ❞ư ✶✳✸✳ ❚❛ ❝â (Rn)∗ = Rn s✉② r❛ (Rn)∗∗ = ((Rn)∗)∗ = (Rn)∗ = Rn✳
❱➔ ♣❤➨♣ ♥❤ó♥❣ ❝❤✉➞♥ t➢❝ H : Rn −→ (Rn )∗∗ ❧➔ ♠ët ✤ì♥ →♥❤ t✉②➳♥
t➼♥❤ ✈➻ ❍ ❧➔ ♠ët ♣❤➨♣ ✤➥♥❣ ❝ü t✉②➳♥ t➼♥❤✳ ❉♦ ✤â ❍ ❧➔ t♦➔♥ →♥❤ t✉②➳♥
t➼♥❤✳ ❱➟② Rn ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ♣❤↔♥ ①↕✳

❱➼ ❞ư ✶✳✹✳ ❑❤ỉ♥❣ ❣✐❛♥ Lp[0, 1] ✈ỵ✐ p > 1 ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ♣❤↔♥ ①↕✳ ▼å✐
❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ ❤ú✉ ❤↕♥ ❝❤✐➲✉ ✤➲✉ ♣❤↔♥ ①↕✳



• ❑❤æ♥❣ ❣✐❛♥ ❊✲❙ ✭❊♣❤✐♠♦✈ ❙t❡❝❤❦✐♥ ✮

✣à♥❤ ♥❣❤➽❛ ✶✳✺✳ ❑❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ❊ ✤÷đ❝ ❣å✐ ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❊♣❤✐✲
♠♦✈ ❙t❡❝❤❦✐♥ ✭❤❛② ❦❤æ♥❣ ❣✐❛♥ ❝â t➼♥❤ ❝❤➜t ❊✲❙✮ ♥➳✉ ❊ ♣❤↔♥ ①↕ ✈➔
tr♦♥❣ ❊ sü ❤ë✐ tö ②➳✉ ❝→❝ ♣❤➛♥ tû

( xn → x )

(xn

x)

❧✉ỉ♥ ❦➨♦ t❤❡♦ sü ❤ë✐ tư ♠↕♥❤


✈➔ sü ❤ë✐ tö ❝❤✉➞♥

( xn − x → 0).

❱➼ ❞ö ✶✳✺✳ ❑❤ỉ♥❣ ❣✐❛♥ ❍✐❧❜❡rt ❝â t➼♥❤ ❝❤➜t ❊✲❙
• P❤✐➳♠ ❤➔♠ ỷ tử ữợ

E ởt ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ t❤ü❝ ♣❤↔♥ ①↕✱ E ∗
E ✳ ϕ : X → R {∞}

❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❧✐➯♥ ❤đ♣ ❝õ❛
tr➯♥

❧➔ ởt

E
(x)

P



xE

ữủ ồ ỗ

(x + (1 − α)y) ≤ αϕ(x) + (1 − α)ϕ(y), ∀α ∈ [0, 1], x, y ∈ E.
ϕ(x)

❜✮ P❤✐➳♠ ❤➔♠


①→❝ ✤à♥❤ tr ổ

ỷ tử ữợ tr
P ❤➔♠

E✱

ϕ(x) ①→❝

♥➳✉

✤÷đ❝ ❣å✐

limy→x ϕ(y) ≤ ϕ(x), ∀x ∈ E ✳

✤à♥❤ tr ổ

ỷ tử ữợ t

E

x0 ✱

♥➳✉

E

✤÷đ❝ ❣å✐ ❧➔


∀{xn } : ϕ(x0 ) ≤ ❧✐♠ ✐♥❢ϕ(xn ).

• ❚♦→♥ tû ✤ì♥ ✤✐➺✉

✣à♥❤ ♥❣❤➽❛ ✶✳✼✳ ❈❤♦ E ❧➔ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ♣❤↔♥ ①↕ ✈ỵ✐ ❦❤ỉ♥❣ ❣✐❛♥
❧✐➯♥ ❤đ♣ ❝õ❛ ♥â ❧➔
✈➔ ♠✐➲♥ ↔♥❤

E ∗ ✳❈❤♦

A

t♦→♥ tû

✈ỵ✐ ♠✐➲♥ ①→❝ ✤à♥❤ ❧➔

D(A) ⊆ E

R(A) ⊆ E ∗ .

❛✮ ❚♦→♥ tû

A

✤÷đ❝ ❣å✐ ❧➔ ✤ì♥ ✤✐➺✉ ♥➳✉✿

A(x) − A(y), x − y ≥ 0, ∀x, y ∈ D(A),
❜✮ ❚♦→♥ tû
❦❤✐


x = y.

A

✤÷đ❝ ❣å✐ ❧➔ ✤ì♥ ✤✐➺✉ ❝❤➦t ♥➳✉ ❞➜✉ ❜➡♥❣ ❝❤➾ ✤↕t ✤÷đ❝

❚r♦♥❣ tr÷í♥❣ ❤đ♣

A

❧➔ t♦→♥ tû t✉②➳♥ t➼♥❤ t❤➻ t➼♥❤ ✤ì♥ ✤✐➺✉

t÷ì♥❣ ữỡ ợ t ổ ừ t tỷ
tỷ


d(t)

A

ữủ ồ ỡ tỗ t ởt ổ

ổ ❣✐↔♠ ✈ỵ✐

t ≥ 0, d(0) = 0


✈➔ t❤ä❛ ♠➣♥ t➼♥❤ ❝❤➜t✿



A(x) − A(y), x − y ≥ [d( x ) − d( y )]( x



y ), ∀x, y ∈

D(A).
❞✮ ❚♦→♥ tỷ


(t)

A ữủ

ồ ỡ tỗ t ởt ❤➔♠ ❦❤ỉ♥❣

❦❤ỉ♥❣ ❣✐↔♠ ✈ỵ✐

t ≥ 0, δ(0) = 0

✈➔

A(x) − A(y), x − y ≥ δ( x − y ), ∀x, y ∈ D(A).
◆➳✉

δ(t) = CA t2

✈ỵ✐

CA


❧➔ ♠ët ❤➡♥❣ sè ❞÷ì♥❣ t❤➻ t♦→♥ tû

A

✤÷đ❝

❣å✐ ❧➔ ✤ì♥ ✤✐➺✉ ♠↕♥❤✳

❱➼ ❞ư ✶✳✻✳ ❚♦→♥ tû t✉②➳♥ t➼♥❤ A : RM → RM ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐
A = BT B✱
✈ỵ✐ B ❧➔ ♠ët ♠❛ tr➟♥ ✈✉ỉ♥❣ ❝➜♣ ▼✱ ❧➔ ♠ët t♦→♥ tû ✤ì♥ ✤✐➺✉✳

◆❤➟♥ ①➨t ✶✳✶✳ ◆➳✉ t♦→♥ tû A ❝â t➼♥❤ ❝❤➜t t✉②➳♥ t➼♥❤ t❤➻ A ✤÷đ❝ ❣å✐
❧➔ ✤ì♥ ✤✐➺✉ ♠↕♥❤ ♥➳✉

Ax, x ≥ mA

x

2

, mA > 0, ∀x ∈ D(A).

❱➼ ❞ö ✶✳✼✳ ❍➔♠ sè f : R → R ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ f (x) = 2012x ❧➔
t♦→♥ tû t✉②➳♥ t➼♥❤ ✤ì♥

ã tỷ tử tử
tỷ


A

ữủ ồ ❧➔

t → 0+ , ∀x, y ∈ X ✱
s✉② r❛

Axn

Ax

h−❧✐➯♥ tư❝

tr➯♥ ❳ ♥➳✉

A(x + ty)

Ax

✈➔ ❆ ✤÷đ❝ ❣å✐ ❧➔ ❞✲❧✐➯♥ tö❝ tr➯♥ ❊ ♥➳✉ tø

❦❤✐

❦❤✐

xn → x

n → ∞.

❱➼ ❞ö ✶✳✽✳ ❍➔♠ ❤❛✐ ❜✐➳♥ ϕ(x, y) = xy2(x2 + y4)−1 ❦❤ỉ♥❣ ❧✐➯♥ tư❝✱

♥❤÷♥❣ ❧✐➯♥ tư❝ t❤❡♦ tø♥❣ ❜✐➳♥ t↕✐ (0, 0)✱ ❞♦ ✤â ♥â ❧➔

❤✲❧✐➯♥ tö❝

t↕✐

(0, 0)✳

✣à♥❤ ♥❣❤➽❛ ✶✳✽✳ ❚♦→♥ tû A : E −→ E ✤÷đ❝ ❣å✐ ❧➔✿
❛✮

J−✤ì♥

✤✐➺✉ tr➯♥

E✱

♥➳✉ tỗ t



j(x y) J(x y)

s


A(x) − A(y), j(x − y) ≥ 0,

✈ỵ✐


❜✮ J−✤ì♥ ✤✐➺✉ ♠↕♥❤ tr➯♥ ❊ ✈ỵ✐ ❤➡♥❣ sè

α❃0



∀x, y ∈ E ✳

α✱

♥➳✉ tỗ t ởt

s

A(x) A(y), j(x y) ≥ α
❝✮ ▲✐➯♥ tö❝ ▲✐♣❝❤✐t③ tr➯♥

E✱

x−y

2

✱ ∀x, y ∈ E ✱

♥➳✉

A(x) − A(y) ≤ L x − y , ∀x, y ∈ E,
Ð ✤➙②✱ L ❧➔ ❤➡♥❣ sè ❞÷ì♥❣✳ ❑❤✐ L = 1 t❤➻ A ✤÷đ❝ ❣å✐ ❧➔ t♦→♥ tû ổ


ữủ

Jỡ

số ữỡ



ợ số

tr E

tỗ t ởt

s

A(x) A(y), j(x y) ≥ λ A(x) − A(y) 2 , ∀x, y ∈ E,
❘ã r➔♥❣✱ ♥➳✉ A ❧➔ t♦→♥ tû ♥❣÷đ❝ J− ✤ì♥ ✤✐➺✉ ♠↕♥❤ ✈ỵ✐ ❤➡♥❣ sè λ t❤➻
❆ ❧➔ ❧✐➯♥ tư❝ ▲✐♣s❝❤✐t③ ✈ỵ✐ ❤➡♥❣ sè (1/λ)✳
❡✮ m− J− ✤ì♥ ✤✐➺✉ tr♦♥❣ E ✱ ♥➳✉ A ❧➔ J− ✤ì♥ ✤✐➺✉ ✈➔ R(A+λI) =

E ✱ ∀λ ≥ 0✳
I

Ð ✤➙②

R(A)

✤÷đ❝ ❦➼ ❤✐➺✉ ❧➔ ❦❤♦↔♥❣ t ừ


t tỷ ỗ t tr

A



E

ú ỵ ◆➳✉ ❊ ❧➔ ♠ët ❦❤æ♥❣ ❣✐❛♥ ❍✐❧❜❡rt t❤➻ ❦❤→✐ ♥✐➺♠ t♦→♥ tû
m✲J ✲✤ì♥ ✤✐➺✉ trị♥❣ ✈ỵ✐ ❦❤→✐ ♥✐➺♠ t♦→♥ tû ✤ì♥ ✤✐➺✉ ❝ü❝ ✤↕✐✳ ❉➵ ❞➔♥❣
♥❤➟♥ t❤➜② r➡♥❣ ♠ët →♥❤ ①↕ t✉②➳♥ t➼♥❤ ✈➔ ①→❝ ✤à♥❤ ❦❤æ♥❣ ➙♠ ❧➔ ♠ët
→♥❤ ①↕ ✤ì♥ ✤✐➺✉✳

• ❚♦→♥ tû ❣✐↔ ❝♦

✣à♥❤ ♥❣❤➽❛ ✶✳✾✳ ❚♦→♥ tû
❇❛♥❛❝❤
❝❤♦

E

T

✤÷đ❝ ❣å✐ ❧➔ ❣✐↔ ❝♦ ❝❤➦t tr➯♥ ❦❤ỉ♥❣ ❣✐❛♥

tr♦♥❣ t❤✉➟t ỳ ừ rr

x, y E

[7]


tỗ t

[0, 1)

t❛ ❝â

T x − T y, j(x − y) ≤

x−y


2

✲λ

x − y − (T x − T y)

2

s❛♦


õ t t ữợ

(I T )x (I − T )y, j(x − y) ≥ λ
❉♦ ✤â✱
t❤➻

T


I −T

❧➔ ♥❣÷đ❝

J−✤ì♥

(I − T )x − (I − T )y

✤✐➺✉ ợ số





2

= 0

ữủ ồ

ó r➔♥❣✱ ♥➳✉ T ❧➔ ❣✐↔ ❝♦ t❤➻ A := I − T ❧➔ ♠ët →♥❤ ①↕ J− ✤ì♥
✤✐➺✉✱ ✈➔ ♥❣÷đ❝ ❧↕✐✱ ♥➳✉ A ❧➔ J− ✤ì♥ ✤✐➺✉ t❤➻ T = I − A ❧➔ ❣✐↔ ❝♦✳

❱➼ ❞ö ✶✳✾✳ ▲➜② f (x) = e−x ✈ỵ✐ x ∈ (−∞, +∞) → (−∞, 0)✳ ❑❤✐ ✤â✱
f ❧➔ ♠ët ❤➔♠ sè ✤ì♥ ✤✐➺✉ ❣✐↔♠ ✈➔ ❞♦ ✤â f ❧➔ ♠ët →♥❤ ①↕ ❣✐↔ ❝♦✳
❙❛✉ ởt số ỵ tt ữủ sỷ ử ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ❦➳t
q✉↔ tr♦♥❣ ♣❤➛♥ s❛✉✳

✣à♥❤ ♥❣❤➽❛ ✶✳✶✵✳ ❈❤♦ E ❧➔ ❦❤æ♥❣ ❣✐❛♥ t✉②➳♥ t➼♥❤ ✤à♥❤ ❝❤✉➞♥ t❤ü❝

✈➔

S1 (0) := {x ∈ E : x = 1},
❑❤ỉ♥❣ ❣✐❛♥

E

✤÷đ❝ ❣å✐ ❧➔ ❝â ❝❤✉➞♥ ❦❤↔ ✈✐ ●➙t❡❛✉① ✭❤♦➦❝ trì♥✮ ♥➳✉

∃ lim
t→0

❑❤ỉ♥❣ ❣✐❛♥

E

x + ty − x
, ∀x, y ∈ S1 (0).
t

✤÷đ❝ ❣å✐ ❧➔ ❝â ❝❤✉➞♥ ❦❤↔ ✈✐ ●➙t❡❛✉① ✤➲✉ ♥➳✉ ❣✐ỵ✐

❤↕♥ ♥➯✉ ð tr➯♥ ✤➲✉ ✈ỵ✐

x ∈ S1 (0)✳

❑❤ỉ♥❣ ❣✐❛♥ ❊ ữủ ồ ỗ t

x, y S1 (0)




x = y✱

t❛

❝â

❁ ✶✱ ∀λ ∈ (0, 1).

(1 − λ)x + y

ổ ỗ t ỏ ữủ t ữ s ổ
ữủ ồ ỗ t ♥➳✉ ✈ỵ✐ ♠å✐ x, y ∈ E, x = y ♠➔

x = 1, y = 1✱ t❛ ❝â✿
||

x+y
|| < 1.
2

❱➼ ử ổ Lp[a, b] ổ ỗ ❝❤➦t✳



✣à♥❤ ♥❣❤➽❛ ✶✳✶✶✳ ❈❤♦ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ l∞ ✈ỵ✐
a

✈➔ ❝❤✉➞♥


l∞ ✳ ❑➼

tr➯♥

❤✐➺✉

❇❛♥❛❝❤ ♥➳✉

supi∈N |ai |

∞=

µ

µ

❧➔ ♣❤✐➳♠ ❤➔♠ t✉②➳♥ t➼♥❤ ❧✐➯♥ tư❝

µk (ak ) := µ((a1 , a2 , ...))✱ ❦❤✐

✤â

µ ữủ

ồ ợ

tọ

àk (1) 1 àk (ak+1 ) àk (ak ),


à




(a1 , a2 , ...) l∞

(a1 , a2 , ...) ∈ l∞ ✳

❱ỵ✐ ❣✐ỵ✐ ❤↕♥ ❇❛♥❛❝❤ µ✱ t❛ ❝â

lim inf ak ≤ µk (ak ) ≤ lim sup ak
k→∞

k→∞

❱ỵ✐ ♠é✐ (a1 , a2 , ...) ∈ l∞ ✳ ◆➳✉ a = (a1 , a2 , ...) ∈ l∞ ✱ b = (b1 , b2 , ...) ∈ l∞
✈➔ ak −→ c✱ ✭t÷ì♥❣ ù♥❣ ak − bk −→ 0 ❦❤✐ k −→ ∞✮ ❚❛ ❝â µk (ak ) =

à(a) = c tữỡ ự àk (ak ) = µk (bk )✮✳

❇ê ✤➲ ✶✳✶✳ [6] ❈❤♦ C ❧➔ ởt t ỗ ừ ổ E
õ ❧➔ ❦❤↔ ✈✐ ●➙t❡❛✉① ✤➲✉✳ ●✐↔ sû
tr♦♥❣

E✱ z ∈ C

✈➔


µ

❧➔ ởt t ợ ở

ợ t

àk
❝❤➾ ❦❤✐

{xk }

xk − z

2



xk − u

min
u∈C

µk u − z, J(xk z)

r [7] r ữủ ợ t tû

✵ ✈ỵ✐ ♠å✐

❏✲


2

,

u ∈ C✳

✤ì♥ ✤✐➺✉ ✈➔ ❧✐➯♥ tư❝ ▲✐♣s❝❤✐t③

tr➯♥ ❊ ❧➔ ♠✲❏ ✲ ✤ì♥ ✤✐➺✉✳ ✣è✐ ✈ỵ✐ ♠é✐ t♦→♥ tû ❆ ❧➔ ♠✲❏ ✲✤ì♥ ✤✐➺✉ tr♦♥❣
❊ ✈➔ ✤✐➸♠ ❜➜t ✤ë♥❣ f ∈ E ✳ ❚♦→♥ tû u = Tf (x) ✤÷đ❝ ①→❝ ✤à♥❤ tø ✤➥♥❣
t❤ù❝

A(u) + u = f + x,
✈ỵ✐ ♠é✐ x ∈ E ✳
❑❤✐ ✤â Tf t❤ä❛ ♠➣♥ ❝→❝ t➼♥❤ ❝❤➜t s❛✉✿

• Tf ❧➔ ❦❤ỉ♥❣ ❣✐➣♥
✶✵

✭✶✳✶✮


• F ix(Tf ) = S ✱ ð ✤➙② F ix(Tf ) ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ ❧➔ t➟♣ ❝→❝ ✤✐➸♠ ❜➜t
✤ë♥❣ ❝õ❛ Tf ✳

F ix(Tf ) ❂ {x ∈ E : x = Tf (x)}.

✶✳✷ ❇➔✐ t♦→♥ ✤➦t ❦❤æ♥❣ ❝❤➾♥❤

✶✳✷✳✶ ❑❤→✐ ♥✐➺♠ ❜➔✐ t♦→♥ ✤➦t ❦❤æ♥❣ ❝❤➾♥❤

❑❤→✐ ♥✐➺♠ ❜➔✐ t♦→♥ ❝❤➾♥❤ ✤÷đ❝ ❏✳ ❍❛❞❛♠❛r❞ ✤÷❛ r❛ ❦❤✐ ♥❣❤✐➯♥ ❝ù✉
✈➲ ↔♥❤ ❤÷ð♥❣ ❝õ❛ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❜✐➯♥ ❧➯♥ ♥❣❤✐➺♠ ❝õ❛ ❝→❝ ♣❤÷ì♥❣ tr
t ụ ữ r t t ố ợ ♣❤÷ì♥❣ tr➻♥❤
▲❛♣❧❛❝❡

∂ 2 un ∂ 2 un
+
= 0, −∞ < x < ∞, 0 < y,
∂x2
∂y 2
un (x, 0) = n−2 sin nx, −∞ < x < ∞,
∂un
(x, 0) = n−1 sin nx, −∞ < x < ∞.
∂y
❇➔✐ t♦→♥ ♥➔② ❝â ♥❣❤✐➺♠ ❞✉② ♥❤➜t ❧➔ un (x, y) = n−2 eny sin nx✱ ð ❜➔✐
t♦→♥ ♥➔② t❛ ❞➵ t❤➜② un (x, 0),

∂un
∂y (x, 0)

→ 0 ❦❤✐ n → ∞✱ tr♦♥❣ ❦❤✐ ✤â

un (x, y) → ∞ ❦❤✐ n → ∞ ợ ồ y > 0 t ừ ữỡ
tr t♦→♥ tû

Ax = f, f ∈ Y,

✭✶✳✷✮

❝ô♥❣ ♣❤↔✐ ❞ü❛ ✈➔♦ ❞ú ❦✐➺♥ ❜❛♥ ✤➛✉ ❢✱ ❝â ♥❣❤➽❛ ❧➔ x = R(f )✳ ❚❛ s➩ ❝♦✐

♥❣❤✐➺♠ ❝ơ♥❣ ♥❤÷ ❝→❝ ❞ú ❦✐➺♥ ✤â ❧➔ ♥❤ú♥❣ ♣❤➛♥ tû t❤✉ë❝ ❦❤æ♥❣ ❣✐❛♥
❳ ✈➔ ❨ ợ ở tữỡ ự X (x1 , x2 ) ✈➔ ρY (f1 , f2 )✱ x1 , x2 ∈

X, f1 , f2 ∈ Y ✳
●✐↔ sû ❝â ♠ët ❦❤→✐ ♥✐➺♠ t❤➳ ♥➔♦ ❧➔ ♥❣❤✐➺♠ ❝õ❛ ♠ët ❜➔✐ t♦→♥✳ ❑❤✐
✤â ❜➔✐ t♦→♥ t➻♠ ♥❣❤✐➺♠ x = R(f ) ✤÷đ❝ ❣å✐ ❧➔ ê♥ ✤à♥❤ tr➯♥ ❝➦♣ ❦❤ỉ♥❣
❣✐❛♥ (X, Y )✱ ♥➳✉ ✈ỵ✐ ♠é✐ sè ε > 0 ❝â t❤➸ t➻♠ ✤÷đ❝ ♠ët sè δ(ε) > 0✱
s❛♦ ❝❤♦ tø ρY (f1 , f2 ) ≤ δ(ε) ❝❤♦ t❛ ρX (x1 , x2 ) ≤ ε✱ ð ✤➙②

x1 = R(f1 ), x2 = R(f2 ); x1 , x2 ∈ X; f1 , f2 ∈ Y.
✶✶


✣à♥❤ ♥❣❤➽❛ ✶✳✶✷✳ ❇➔✐ t♦→♥ t➻♠ ♥❣❤✐➺♠ x ∈ X t❤❡♦ ❞ú ❦✐➺♥ f ∈ Y
✤÷đ❝ ❣å✐ ❧➔ ❜➔✐ t♦→♥ ✤➦t ❝❤➾♥❤ tr➯♥ ❝➦♣ ❦❤ỉ♥❣ ❣✐❛♥ ♠❡tr✐❝

(X, Y )✱

♥➳✉

❝â✿

✶✳

P❤÷ì♥❣ tr➻♥❤ ✭✶✳✷✮ ❝â ♥❣❤✐➺♠

✷✳

◆❣❤✐➺♠


x0

✤÷đ❝ ①→❝ ✤à♥❤ ♠ët ❝→❝❤ ❞✉② ♥❤➜t✱

✸✳

◆❣❤✐➺♠

x0

♣❤ư t❤✉ë❝ ♠ët ❝→❝❤ ❧✐➯♥ tư❝ ✈➔♦

x0

✈ỵ✐ ♠å✐

f ∈Y✱

f✳

◆➳✉ ➼t ♥❤➜t ♠ët tr♦♥❣ ❜❛ ✤✐➲✉ ❦✐➺♥ tr➯♥ ❦❤ỉ♥❣ ✤÷đ❝ t❤ä❛ ♠➣♥ t❤➻
❜➔✐ t ữủ ồ t ổ

ố ợ ❜➔✐ t♦→♥ ♣❤✐ t✉②➳♥ t❤➻ ✤✐➲✉ ❦✐➺♥ t❤ù ❤❛✐ ❣➛♥ ♥❤÷ ❦❤ỉ♥❣
t❤ä❛ ♠➣♥✳ ❉♦ ✈➟② ❤➛✉ ❤➳t ❝→❝ ❜➔✐ t♦→♥ ♣❤✐ t✉②➳♥ ✤➲✉ ❧➔ ❜➔✐ t♦→♥ ✤➦t
❦❤æ♥❣ ❝❤➾♥❤✳
❚r♦♥❣ ♥❤✐➲✉ ù♥❣ ❞ư♥❣ t❤➻ ✈➳ ♣❤↔✐ ❝õ❛ ✭✶✳✷✮ t❤÷í♥❣ ✤÷đ❝ ❝❤♦ ❜ð✐
✤♦ ✤↕❝✱ ♥❣❤➽❛ ❧➔ t❤❛② ❝❤♦ ❣✐→ trà ❝❤➼♥❤ ①→❝ ❢✱ t❛ ❝❤➾ ❜✐➳t ①➜♣ ①➾ fδ ❝õ❛
♥â t❤ä❛ ♠➣♥


fδ − f ≤ δ ✳ ●✐↔ sû xδ ❧➔ ♥❣❤✐➺♠ ❝õ❛ ợ



t

f tt r tỗ t 0 t f f ữ
ợ t ✤➦t ❦❤ỉ♥❣ ❝❤➾♥❤ t❤➻ xδ ❦❤ỉ♥❣ ❤ë✐ tư tỵ✐ ①✳

✶✳✷✳✷ ❱➼ ❞ư ✈➲ ❜➔✐ t♦→♥ ✤➦t ❦❤ỉ♥❣ ❝❤➾♥❤
❙❛✉ ✤➙② t❛ s➩ ❝❤➾ r❛ ♠ët sè ✈➼ ❞ö ✈➲ t♦→♥ tû ❆ ♠➔ ✭✶✳✷✮ ❧➔ ❜➔✐ t♦→♥
✤➦t ❦❤ỉ♥❣ ❝❤➾♥❤✳

❱➼ ❞ư ✶✳✶✶✳ ❚❛ ①➨t ❜➔✐ t♦→♥ ❝ê ✤✐➸♥✳ ✣â ❧➔ ❜➔✐ t♦→♥ ❦❤ỉ✐ ♣❤ư❝ ❤➔♠
sè ❦❤✐ ❜✐➳t ❤➺ sè ❋♦✉r✐❡r ❝õ❛ ♥â✳ ●✐↔ sû ϕk (t) ❧➔ ♠ët ❤➺ trü❝ ❝❤✉➞♥
✤➛② ✤õ ❝â sup |ϕk (t)| ≤ C0 ✱ ✈➔ ❤➺ sè ❋♦✉r✐❡r a = (a1 , a2 ....) ❝õ❛ ❤➔♠
t∈[a,b]


f (t) =

ak ϕk (t),
k=1

❚❤❛② ❝❤♦ ak ✤÷đ❝ ❝❤♦ ①➜♣ ①➾ ❜ð✐ ck ✱ ck t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ✿
✶✷





(ak − ck )2 ≤ δ 2 ✱

k=1

❍➔♠ f (t) =



ak ϕk (t)✱ f (t) = f (t), t↕✐ t✳ ●✐↔ t❤✐➳t M ax|ϕk (t)| ≤ C0 ✳
t∈[a,b]

k=1

❚➻♠ ①➜♣ ①➾ ❝õ❛ f (t0 ) = f (t0 )✳ ▲➜② ❤➔♠✿
n(δ)

fn(δ) (t0 ) =

ck ϕk (t0 ),
k=1

n(δ) ❝❤å♥ s❛♦ ❝❤♦ ✿ n(δ) → ∞, δ → ∞✱ n(δ) = [ η(δ)
δ 2 ], η(δ) → 0, δ → 0,
❚❤➟t ✈➟② ✿
n(δ)

|f (t0 ) − fn(δ) (t0 )| = |

n(δ)




ak ϕk (t0 ) −

ak ϕk (t0 ) +
k=1

n(δ)



|ak − ck ||ϕk (t0 )| + |
k=1

❱➻ ❝❤✉é✐



ck ϕk (t0 )| ≤
k=1

k=1+n(δ)

ak ϕk (t0 )|,
k=1+n(δ)
n(δ)

ak ϕk (t0 ) ❤ë✐ tư✱ ❝❤♦ ♥➯♥ ♣❤➛♥ ❞÷ |

k=1


ak ϕk (t0 )| → 0
k=1+n(δ)

❦❤✐ n(δ) → ∞.
◆❣♦➔✐ r❛✿
n(δ)

n(δ)

|ak − ck ||ϕk (t0 )| ≤ (
k=1

≤ C0 δ

n(δ)
2

|ϕk (t0 )|2 )1/2

|ak − ck | .
k=1

n(δ) = C0 δ. [ η(δ)
δ 2 ] = C0

k=1

η(δ) → 0 ❦❤✐ δ → 0,


❱➼ ❞ư ✶✳✶✷✳ ❈❤♦ A ❧➔ ♠ët t♦→♥ tû ✤ì♥ ✤✐➺✉✱ ❈❤♦ X

= Y = R3 ✱

❆ ❧➔ ♠ët ♠❛ tr➟♥ ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ ♠❛ tr➟♥ ✈✉ỉ♥❣ ❝➜♣ ✸✳ ❚♦→♥ tû

A : R3 → R3 ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ ♠❛ tr➟♥
A=

1 0 0
0 1 0
0 0 0

❉➵ t❤➜② r➡♥❣ Ax, x = x21 +x22 ≥ 0, ∀x = (x1 , x2 , x3 ) ∈ R3 ✳ ❙✉② r❛

A ❧➔ ♠ët t♦→♥ tû ✤ì♥ ✤✐➺✉✳

✶✸


❑❤✐ ✤â ❤➺ ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ ❝â ❞↕♥❣ x1 = f1 , x2 = f2 , 0x1 + 0x2 +

0x3 = f3 ✈ỵ✐ f = (f1 , f2 , f3 ) ∈ R3 ✳
❍✐➸♥ ♥❤✐➯♥✱ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ♥➔② ❝â ♥❣❤✐➺♠ ❦❤✐ f = (f1 , f2 , 0)✱ ✈ỵ✐

f1 , f2 tũ ỵ
ữủ ❜ð✐ fδ = (f1 , f2 , f3δ ) ✈ỵ✐ f3δ = 0 t❤➻ ❤➺
♣❤÷ì♥❣ tr➻♥❤ tr➯♥ tr♦♥❣ tr÷í♥❣ ❤đ♣ ♥➔② ✈ỉ ♥❣❤✐➺♠✳

✶✳✸ P❤÷ì♥❣ ♣❤→♣ ❤✐➺✉ ❝❤➾♥❤ ❚✐❦❤♦♥♦✈

✣➸ t➻♠ ♥❣❤✐➺♠ ①➜♣ ①➾ ❝õ❛ ❜➔✐ t♦→♥ ✭✶✳✷✮ ❦❤✐ ❦❤æ♥❣ ❜✐➳t t❤æ♥❣ t✐♥
✈➲ ♥❣❤✐➺♠ ❝❤➼♥❤ ①→❝ x0 ✱ ❆✳◆✳ ❚✐❦❤♦♥♦✈ ✤➣ ✤÷❛ r ởt số
ợ õ ữỡ ❝❤➾♥❤ ❞ü❛ tr➯♥ ✈✐➺❝ ①➙② ❞ü♥❣ t♦→♥ tû
❤✐➺✉ ❝❤➾♥❤ ✈➔ ồ tr ừ ởt t số ợ ữ ✈➔♦✳
●✐↔ sû A−1 ❦❤ỉ♥❣ ❧✐➯♥ tư❝ ✈➔ t❤❛② ❝❤♦ ❢ t❛ ❜✐➳t fδ : ρY (fδ , f ) ≤

δ → 0✳ ❇➔✐ t♦→♥ ✤➦t r❛ ❧➔ ❞ü❛ ✈➔♦ t❤æ♥❣ t✐♥ ✈➲ (A, fδ ) ✈➔ ♠ù❝ s❛✐ sè δ ✱
t➻♠ ♠ët ♣❤➛♥ tû xδ ①➜♣ ①➾ ♥❣❤✐➺♠ ❝❤➼♥❤ ①→❝ x0 ❝õ❛ ❜➔✐ t♦→♥ ✭✶✳✷✮✳ ❘ã
r➔♥❣ ❧➔ ❦❤æ♥❣ t❤➸ ①➙② ❞ü♥❣ ♣❤➛♥ tû xδ t❤❡♦ q✉② t➢❝ xδ = A−1 fδ ✳ ❱➻
t❤ù ♥❤➜t ❧➔ A−1 ❝â t❤➸ ❦❤æ♥❣ ①→❝ ✤à♥❤ ✈ỵ✐ f ∈ Y ✱ t❤ù ❤❛✐ A−1 ❦❤ỉ♥❣
❧✐➯♥ tử A1 f tỗ t ụ ữ ✤➣ ①➜♣ ①➾ A−1 f ✳ ❚❤❛♠
sè δ ❝❤➾ ❝❤♦ t❛ ✤ë s❛✐ sè ✈➳ ♣❤↔✐ ❝õ❛ (1.2)✳ ❱➻ ✈➟② ♠ët ✤✐➲✉ tü ♥❤✐➯♥
♥↔② s✐♥❤ ❧➔ ❧✐➺✉ ❝â t❤➸ ①➙② ❞ü♥❣ ♣❤➛♥ tû ①➜♣ ①➾ ♣❤ö t❤✉ë❝ ✈➔♦ ♠ët
t❤❛♠ sè ♥➔♦ ✤â ✈➔ t❤❛♠ sè ♥➔② ✤÷đ❝ ❝❤å♥ t÷ì♥❣ t❤➼❝❤ ✈ỵ✐ δ s❛♦ ❝❤♦
❦❤✐ δ → 0 t❤➻ ♣❤➛♥ tû ♥➔② ①➜♣ ①➾ ❤ë✐ tö ✤➳♥ ♥❣❤✐➺♠ x0 ✳ ❚❛ ❝ơ♥❣ t❤➜②
♥➳✉ ✤÷đ❝ t❤➻ tø fδ ∈ Y t❛ ❝â tỷ tở tự tỗ t
ởt t♦→♥ tû ♥➔♦ ✤â t→❝ ✤ë♥❣ tø ❦❤æ♥❣ ❣✐❛♥ ❨ ✈➔♦ ❦❤ỉ♥❣ ❣✐❛♥ ❳✳

✣à♥❤ ♥❣❤➽❛ ✶✳✶✸✳ ❚♦→♥ tû

R(f, α)

♣❤ư t❤✉ë❝ t❤❛♠ sè

α✱ t→❝

✤ë♥❣

tø ❨ ✈➔♦ ❳ ✤÷đ❝ ❣å✐ ❧➔ ♠ët t tỷ t




ỗ t số ữỡ
ợ ồ

(0, 1 )

1



1

ợ ồ



s ❝❤♦ t♦→♥ tû

R(f, α)

①→❝ ✤à♥❤

fδ ∈ Y : ρY (fδ , f ) ≤ δ, δ ∈ (0, δ1 )❀




ỗ t ởt sỹ ử tở


0, () 1
t

ợ ♠å✐

ρX (xα , x0 ) ≤ ε✱

ð ✤➙②

α = α(fδ , δ)

fδ ∈ Y
x0

s❛♦ ❝❤♦ ✈ỵ✐ ♠å✐

t❤ä❛ ♠➣♥

ε >

ρY (fδ , f ) ≤ δ ≤ δ1

❧➔ ♥❣❤✐➺♠ ❝❤➼♥❤ ①→❝ ❝õ❛ ✭✶✳✷✮ ✈➔

xα ∈ R(fδ , α(fδ , δ));
P❤➛♥ tû xα ∈ R(fδ , α) ✤÷đ❝ ❣å✐ ❧➔ ♥❣❤✐➺♠ ❤✐➺✉ ❝❤➾♥❤ ❝õ❛ ❜➔✐ t♦→♥
✭✶✳✷✮ ✈➔ α = α(fδ , δ) = α(δ) ✤÷đ❝ ❣å✐ ❧➔ t❤❛♠ sè ❤✐➺✉ ❝❤➾♥❤✳ ❈ơ♥❣ ❞➵
❞➔♥❣ ♥❤➟♥ t❤➜② tø ✤à♥❤ ♥❣❤➽❛ tr➯♥✱ ♥❣❤✐➺♠ ❤✐➺✉ ❝❤➾♥❤ ờ ợ ỳ

Pữỡ ❧➔ ♠ët tr♦♥❣ ♥❤ú♥❣ ♣❤÷ì♥❣

♣❤→♣ ❤✐➺✉ ❝❤➾♥❤ ♥ê✐ t✐➳♥❣ ✈➔ ✤÷đ❝ sû ❞ư♥❣ ♥❤✐➲✉ ❝❤♦ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉
✈➔ ❣✐↔✐ ❝→❝ ❜➔✐ t♦→♥ ✤➦t ❦❤æ♥❣ ❝❤➾♥❤ tr♦♥❣ ❝→❝ ❧➽♥❤ ✈ü❝ ❦❤→❝ ừ
t ồ

ú ỵ r trữớ ủ = δ✱ ✤à♥❤ ♥❣❤➽❛ ✈➲ t♦→♥ tû ❤✐➺✉ ❝❤➾♥❤
❝â ❞↕♥❣ ✤ì♥ ❣✐↔♥ s❛✉✿
❚♦→♥ tû R(f, δ) t→❝ ✤ë♥❣ tø ❨ ✈➔♦ ữủ ồ ởt t tỷ

ỗ t↕✐ ♠ët sè ❞÷ì♥❣ δ1 s❛♦ ❝❤♦ t♦→♥ tû R(f, δ) ①→❝ ✤à♥❤ ✈ỵ✐ ♠å✐

0 ≤ δ ≤ δ1 ✈➔ ✈ỵ✐ ♠å✐ f ∈ Y s❛♦ ❝❤♦ ρY (f, f0 ) ≤ δ ❀
✷✳ ❱ỵ✐ ε > 0 ❜➜t ❦➻✱ tỗ t 0 = 0 (, f ) 1 s❛♦ ❝❤♦ tø ρY (fδ , f0 ) ≤

δ ≤ δ0 t❛ ❝â ρX (xδ , x0 ) ≤ ε✱ ð ✤➙② xδ ∈ R(fδ , δ)

✶✺


❈❤÷ì♥❣ ✷
P❤÷ì♥❣ ♣❤→♣ ❤✐➺✉ ❝❤➾♥❤ ❝❤♦ ❤➺
♣❤÷ì♥❣ tr➻♥❤ ♣❤✐ t✉②➳♥ ✈ỵ✐ t♦→♥
tû ❏✲✤ì♥ ✤✐➺✉ ✈➔ ❧✐➯♥ tư❝ ▲✐♣s❝❤✐t③
tr➯♥ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤
❚r♦♥❣ ❝❤÷ì♥❣ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ✈➜♥ ✤➲ ❝ì ừ
ữ s ợ t ữỡ t ởt ồ
ữỡ tr ợ t tỷ ✤ì♥ ✤✐➺✉✳ ❚ø ✤â tr➻♥❤ ❜➔② ♣❤÷ì♥❣ ♣❤→♣ t➻♠
♥❣❤✐➺♠ ❝❤✉♥❣ ữỡ tr ợ t tỷ Jỡ ❧✐➯♥
tư❝ ▲✐♣s❝❤✐t③ tr➯♥ ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ t❤ỉ♥❣ q✉❛ ❤❛✐ ✤à♥❤ ỵ ữủ
ự t q ữủ t ❦❤↔♦ tr♦♥❣ ❝→❝ t➔✐ ❧✐➺✉ ❬✷❪✱
❬✸❪✱ ❬✹❪ ✈➔ ❬✺❪✳


✷✳✶ ❚➻♠ ♥❣❤✐➺♠ ❝❤✉♥❣ ❝❤♦ ♠ët ❤å ♣❤÷ì♥❣ tr➻♥❤
t♦→♥ tû ✤ì♥ ✤✐➺✉
❚r♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔②✱ ❝❤ó♥❣ tỉ✐ ①➨t ❜➔✐ t♦→♥ t➻♠ ♥❣❤✐➺♠ ❝❤✉♥❣ ❝õ❛
♠ët ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t✉②➳♥ t➼♥❤

Ai (x) = fi , i = 0, 1, ..., N,

✭✷✳✶✮

Ð ✤➙② {fi }N
i=0 ❧➔ N + 1 ♣❤➛♥ tû tr♦♥❣ E ✱ →♥❤ ①↕ A0 ❧➔ ♠ët L0 −
▲✐♣s❝❤✐t③ ❧✐➯♥ tö❝ ✈➔ J− ✤ì♥ ✤✐➺✉ ✈➔ →♥❤ ①↕ Ai ❧➔ ♠ët γi ♥❣÷đ❝ J−
✤ì♥ ✤✐➺✉ ♠↕♥❤ tr➯♥ E ✱ ✈ỵ✐ ♠é✐ i = 1, 2, ..., N ✳
✶✻


✣à♥❤ ♥❣❤➽❛ Si ❧➔ t➟♣ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t❤ù i ❝õ❛ ❤➺ (2.1)✳
❚❛ ❣✐↔ t❤✐➳t S :=

N
i=0 Si

= ∅✳

❈❤ó♥❣ t❛ ✤➦❝ ❜✐➺t q✉❛♥ t➙♠ tr♦♥❣ tr÷í♥❣ ❤đ♣ ❝→❝ ❞ú ❧✐➺✉ ❝❤♦ ð
✤➙② ❦❤ỉ♥❣ ❝❤➼♥❤ ①→❝✱ ❦❤✐ fi ✤÷đ❝ ①➜♣ ①➾ ❜ð✐ fiδ t❤ä❛ ♠➣♥
✭✷✳✷✮

fi − fiδ ≤ δ, δ −→ 0.


◆❤÷ t❛ ✤➣ ❜✐➳t ♠é✐ ♣❤÷ì♥❣ tr➻♥❤ tr♦♥❣ (2.1) ❧➔ ❜➔✐ t♦→♥ ✤➦t ❦❤æ♥❣
❝❤➾♥❤ t❤❡♦ ♥❣❤➽❛ ♥❣❤✐➺♠ ❜➔✐ t♦→♥ ❦❤ỉ♥❣ ♣❤ư t❤✉ë❝ ♠ët ❝→❝❤ ❧✐➯♥ tư❝
✈➔♦ ❞ú ❦✐➺♥ fi ✱ ✈➻ ✈➟② ❤➺ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❝ơ♥❣ ❧➔ ổ

2006 ữỡ tr (2.1) ợ fi = 0 ❦❤✐ Ai : E −→ E ∗ ✱

i = 0, 1, ...., N ❧➔ N + 1 →♥❤ ①↕ h✲❧✐➯♥ tư❝✱ ✤ì♥ ✤✐➺✉ ✈➔ ❝â t➼♥❤ ❝❤➜t t❤➳
♥➠♥❣ tr➯♥ E ✱ ✤÷❛ r❛ [2]✱ ●✐→♦ s÷ ◆❣✉②➵♥ ❇÷í♥❣ ✤➣ ✤➲ t ữỡ
rr
N



ài Ahi (x) + J(x) = 0,
i=0

µ0 = 0 ❁ µi ❁ µi+1 ❁ ✶✱ ✐❂ ✶✱✷✱✳✳✳✱◆✲✶✳
❱ỵ✐ Ahi ❧➔ →♥❤ ①↕ h✲❧✐➯♥ tư❝ ✈➔ ✤ì♥ ✤✐➺✉ tr➯♥ E ✱ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥✿
✭✷✳✹✮

Ai (x) − Ahi (x) ≤ hg( x ).
❱ỵ✐ g(t) ❧➔ ♠ët ❤➔♠ ❦❤ỉ♥❣ ợ ộ t 0

rữớ ❤đ♣ ✈ỵ✐ N = 0 ✈➔ A0 = A✱ ♠ët →♥❤ ①↕ m✲J− ✤ì♥ ✤✐➺✉ tr➯♥

E ❧➔ ♠ët ❦❤ỉ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ❝â t➼♥❤ ❝❤➜t ❊✲❙ ✈➔ t➼♥❤ ①➜♣ ①➾✱ ✤÷đ❝
♥❣❤✐➯♥ ❝ù✉ ❜ð✐ ❆❧❜❡r ✭①❡♠ ❬✸❪✮✳ ➷♥❣ ➜② ✤➣ ❝❤ù♥❣ ♠✐♥❤ ✤÷đ❝ r➡♥❣ ♥➳✉

Ah ❧➔ J− ✤ì♥ ✤✐➺✉ ✈➔ d✲❧✐➯♥ tư❝ t ữỡ tr

Ah (x) x f .
ợ ộ α > 0✱ ❝â ❞✉② ♥❤➜t ♥❣❤✐➺♠ xτα ✱ τ {, h} J tử
ỗ tớ ❧✐➯♥ tö❝ ②➳✉ tr➯♥ E ✱ ✈➔ (δ + h)/α −→ 0 t❤➻ xτα −→ y∗ ✱
♠ët ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ A(x) = f ✈ỵ✐
✶✼

f − fδ

≤ δ✳


❑❤✐ Ai ❧➔ ❧✐➯♥ tö❝ ✈➔ ✤â♥❣ ②➳✉ tr➯♥ E ≡ H ❧➔ ♠ët ❦❤ỉ♥❣ ❣✐❛♥
❍✐❧❜❡rt tr♦♥❣ [4]✳ ▼ỵ✐ ✤➙② ●✐→♦ s÷ ◆❣✉②➵♥ ❇÷í♥❣ ✈➔ ❝ë♥❣ sü ❉ơ♥❣
❞ü❛ tr➯♥ ❝ì sð t➻♠ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ tè✐ ÷✉ ❦❤ỉ♥❣ r➔♥❣ ❜✉ë❝ ✤➣ sû
❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❝ü✉ t✐➸✉ ♣❤✐➳♠ ❤➔♠ ❤✐➺✉ ❝❤➾♥❤ ❚✐❦❤♦♥♦✈✿
N

Ai (x) − fi

2



x − x+

2

,

✭✷✳✺✮


i=1

Ð ✤➙② x+ ∈ H ✈➔ ❣✐↔ t❤✐➳t ❜❛♥ ✤➛✉ ✤➣ ❝❤♦✳
◆➳✉ ♠é✐ →♥❤ ①↕ Ai ❧➔ t✉②➳♥ t➼♥❤ ✈➔ ❣✐ỵ✐ ♥ë✐ tr➯♥ H t (2.5)
tữỡ ữỡ ợ ữỡ tr s
N

N

Ai Ai (x)

A∗i fi ,

+

+ α(x − x ) =

i=1

✭✷✳✻✮

i=1

◆❣❤✐➯♥ ❝ù✉ ð [5] ✈ỵ✐ A∗ ❧➔ ❧✐➯♥ ❤đ♣ ❝õ❛ A✳
❚r♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔② ✤➸ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮ ❝❤ó♥❣ t❛ ①➨t ♣❤÷ì♥❣
♣❤→♣ ❤✐➺✉ ❝❤➾♥❤ ❇r♦✇❞❡r✲❚✐❦❤♦♥♦✈ ❞ü❛ tr➯♥ ♣❤÷ì♥❣ tr➻♥❤ t♦→♥ tû ợ
t q ữỡ tr (2.1) ✤÷đ❝ ✤÷❛ r❛ tr♦♥❣
tr÷í♥❣ ❤đ♣ t♦→♥ tû Ai ❧➔ J− ✤ì♥ ✤✐➺✉ ✈➔ ♥❣÷đ❝ J− ✤ì♥ ✤✐➺✉ ♠↕♥❤
tr➯♥ ❦❤ỉ♥❣ ❣✐❛♥ ỗ t ợ ✤➲✉

●❛✉t❡❛✉①✳ ●✐↔ t❤✐➳t t♦→♥ tû Ai ✈➔ ✈➳ ♣❤↔✐ fi ✤÷đ❝ ①➜♣ ①➾ ❜ð✐ Ahi ✈➔

fiδ ✈➔ t❤ä❛ ♠➣♥ (2.2)✱ (2.4)✳ ✣➸ t➻♠ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ (2.1)✱ t❛ ①➨t
♣❤÷ì♥❣ tr➻♥❤ ❤✐➺✉ ❝❤➾♥❤ ❞ü❛ tr➯♥ ❝ì sð t➻♠ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥
N

Ah0 (x)



µ

(Ahi (x) − fiδ ) + α(x − x+ ) = f0δ ,

✭✷✳✼✮

i=1

Ð ✤➙② Ahi ❝â t➼♥❤ ❝❤➜t ố ữ Ai tr à (0, 1) ❧➔ ❤➡♥❣
sè ❝è ✤à♥❤✳

✶✽


✷✳✷ ◆❣❤✐➺♠ ❝❤✉♥❣ ❝❤♦ ♠ët ❤å ♣❤÷ì♥❣ tr➻♥❤ t♦→♥
tû ❏✲✤ì♥
rữợ t t ữỡ tr t tỷ
N

A0 (x) +


à



(Ai (x) − fiδ ) + α(x − x+ ) = f0δ ,
i=1

ð ✤➙②✱ µ ∈ [0, 1] ❧➔ ♠ët ❤➡♥❣ số ữỡ ố t số

ỵ s❛✉ ❝❤➾ r❛ sü ❤ë✐ tö ❝õ❛ ♥❣❤✐➺♠ ❤✐➺✉ ❝❤➾♥❤ ✈➲ ♥❣❤✐➺♠ ❝❤✉♥❣
❝õ❛ ❤➺ tr♦♥❣ tr÷í♥❣ ❤đ♣ ❝❤➾ ❝â ♥❤✐➵✉ ð ✈➳ ♣❤↔✐✳

✣à♥❤ ❧➼ ✷✳✶✳ ❈❤♦ E ❧➔ ♠ët ❦❤æ♥❣ tỹ ỗ t
ợ ●➙✉t❡❛✉① ✤➲✉✱
▲✐♣s❝❤✐t③✱
♠é✐

Ai

A0

❧➔ t♦→♥ tû ❏✲✤ì♥ ✤✐➺✉ ✈➔ ❧✐➯♥ tư❝

❧➔ t♦→♥ tỷ ữủ ỡ ợ số

i = 1, 2, ...N ✳

fiδ ∈ E ✱


α>0

✈➔

✷✳ ◆➳✉

S=θ

✈➔ ♣❤➛♥ tû

α

tr➯♥

E✱

❚❛ ❝â✿

✶✳ ▼é✐

✈➔ t❤❛♠ sè

γi

♣❤÷ì♥❣ tr➻♥❤

fiδ

p∗ ∈ S


❝â ♥❣❤✐➺♠ ❞✉② ♥❤➜t

t❤ä❛ ♠➣♥

ữủ ồ s

tợ ởt tỷ

(2.8)

, / 0

(2.2)
t❤➻

✈ỵ✐

xδα

xδα ✳

i = 0, ...N

❤ỉ✐ tư ♠↕♥❤

t❤ä❛ ♠➣♥

p∗ − x+ , j(p∗ − p) ≤ 0, ∀p ∈ S.

✭✷✳✾✮


❈❤ù♥❣ ♠✐♥❤
✭✶✮

❱➻ Ai ❧➔ J− ✤ì♥ ✤✐➺✉ ✈➔ ❧✐➯♥ tư❝ ▲✐♣s❝❤✐t③ tr➯♥ E ✱ ✈ỵ✐ ♠é✐

i = 0, 1, ....N ✳ ❚♦→♥ tû A := A0 + αµ

N

Ai ❝ơ♥❣ ❧➔ ♠ët J− ✤ì♥ ✤✐➺✉

i=1

✈➔ ❧✐➯♥ tư❝ ▲✐♣s❝❤✐t③ tr➯♥ E ✱ ✈➟②✱ ❊ ❝ơ♥❣ ❝â t➼♥❤ ❝❤➜t m − J− ✤ì♥
✤✐➺✉✱ ❞♦ ✤â✱ ữỡ tr (2.8) õ ởt x ợ ♠é✐ α > 0
✈➔ fiδ ∈ E
◆❣❤✐➺♠ ♥➔② ❧➔ ❞✉② ♥❤➜t ❜ð✐ ✈➻ (A + α(I − x+ ))(.) ❧➔ J− ✤ì♥ ✤✐➺✉
♠↕♥❤ ✈ỵ✐ ❤➡♥❣ sè α✳
✶✾


❑❤ỉ♥❣ ♠➜t t➼♥❤ tê♥❣ q✉→t✱ ❣✐↔ sû r➡♥❣ N αµ ≤ 1✳ ❚ø (2.8) t❛

✭✷✮

❝â✿

A0 (xδα ) − A0 (p) + αµ


N

(Ai (xδα ) − Ai (p) − (fiδ − fi )) + α(xδα −

i=1

x+ ), J(xδα − p) ❂ f0δ − f0 , J(xδα − p) ✱ ✈ỵ✐ ♠é✐ p ∈ S ✳
❉♦ ✤â✿
1
α

xδα − x+ , J(xδα − p) ≤


αµ
α

N
i=1

f0δ − f0 , J(xδα − p)

fiδ − fi , J(xδα − p) ✱

❇ð✐ ✈➻ ♠é✐ Ai ❧➔ ♠ët J− ✤ì♥ ✤✐➺✉ ✈ỵ✐ i = 0, 1, ...N ✱ ♥➯♥

xδα − p

2


≤ x+ − p, Jxδα − p) + 2 αδ

xδα − p , ∀p ∈ S ✱

✈➟②✱ xδα ợ ở tỗ t ởt số ữỡ M1 s❛♦ ❝❤♦ ✈ỵ✐ ♠å✐

xδα ≤ M1 ✱ ∀α, δ > 0✱ s✉② r❛
xδα − p

2

δ
≤ x+ − p, J(xδα − p) + 2 (M1 +
α

❚÷ì♥❣ tü tø (2.8) ✈➔ Ai ❧➔

1
γi

p ),

✭✷✳✶✵✮

✲ ▲✐♣s❝❤✐t③ ❧✐➯♥ tư❝✱ ✈ỵ✐ i = 1, 2, ...N ✱ t❛

t❤✉ ✤÷đ❝

A0 (xδα ) − f0 ≤ α


xδα − x+

xδα − x+

≤α

+αµ

N
i=1

+αµ

N
i=1

1
γi (M1 +

Ai (xσα ) − Ai (p)

+2δ

p ) + 2δ ✱

❑➨♦ t❤❡♦
✭✷✳✶✶✮

A0 (xδα ) − f0 = 0,


lim
α,δ/α−→0

❚ø ✭✷✳✽✮ ✈➔ A0 ❧➔ ❏✲✤ì♥ ✤✐➺✉ ✈➔ Ai ữủ J ỡ ợ
số i ♥➯♥ t❛ ❝â
N

Ai (xδα ) − fi

γi
i=1
1−µ

≤α

+

x −

≤ (α1−µ

xδα , J(xδα
+
x −p

2

N



i=1

Ai (xδα ) − fi , J(xδα − p)

− p) + (δ/αµ + N δ)

J(xδα − p)

+(α1−µ /α + N δ))(M1 +
✷✵

p ),


❙✉② r❛

lim
α,δ/α−→0

Ai (xδα ) − fi = 0, i = 1, 2, ...N,

✭✷✳✶✷✮

❳➨t t♦→♥ tû Ti = I − Ai ✈➔ T fi = Ti + fi ✱ ❞➵ t❤➜② p ∈ S ❦❤✐ ✈➔
N
fi
i=0 F ix(T )✳ ❱➻
fi

❝❤➾ ❦❤✐ p ∈


❝♦ tr➯♥ E ✱ ♥➯♥ t♦→♥ tû T

Ai ❧➔ J− ✤ì♥ ✤✐➺✉✱ Ti ❧➔ t♦→♥ tû ❣✐↔

❝ơ♥❣ ❣✐↔ ❝♦ tr➯♥ ❊✳ ❚ø (2.11), (2.12) t❛

i

❝â (I − T f )xδα −→ 0 ✈➔ α, δ/α −→ 0 ❦❤✐ i = 0, 1, ...N ✳ ❉➵ t❤➜②

Λi = (2I − T fi )−1 ❧➔ t♦→♥ tû ❦❤æ♥❣ ❣✐➣♥✳
❚❤ü❝ ✈➟②✱ 2I − T fi = I + I − T fi = I + Ai − fi ❧➔ ♠ët J− ✤ì♥ ✤✐➺✉
♠↕♥❤ tr➯♥ E ✳
❱➟② R(2I − T fi ) = E.
❚ø (1.1) t❛ ❝â

(2I − T fi )x = (I + I − T fi )x = (I + Ai )x − fi ,
❚♦→♥ tû Ai (x) = Ai (x) − fi ❧➔ m − J− ✤ì♥ ✤✐➺✉✱ ✈➔ (I + Ai )−1 ❧➔ ❦❤ỉ♥❣
❣✐➣♥✱ t❤❡♦ ✤â✱ Λi ❝ơ♥❣ ❧➔ ❦❤æ♥❣ ❣✐➣♥✳
❘ã r➔♥❣✱ F ix(Λi ) = F ix(T fi ) = Si ✱ ✈➟②
δ
δ
xδα − T fi xδα = (2I − T fi )xδα − xδα = Λ−1
i xα − xα ,

✈➔
δ
δ
Λi Λ−1

i xα = xα ,

❙✉② r❛
−1 δ
δ
δ
δ
fi δ
xδα − Λi xδα = Λi Λ−1
i xα − Λi xα ≤ Λi xα − xα = (I − T )xα ,

✈➟②

xδα − Λi xδα −→ 0 ❦❤✐ α, δ/α −→ 0.

❈❤♦ {xk } ❧➔ ❞➣② ❝♦♥ ❝õ❛ {xδα } ✈ỵ✐ αk , δk /αk → 0 ❦❤✐ k → t
(x) = àk

xk x

2

ợ ồ x ∈ E ✳ ❚❛ ❝â ϕ(x) −→ ∞ ❦❤✐

x ợ ỗ tử





×