Tải bản đầy đủ (.pdf) (37 trang)

Nghiên cứu công nghệ SX thép mác Z50CD15 dùng để chế tạo khuôn ép thức ăn gia súc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.21 MB, 37 trang )

1
BỘ CÔNG THƯƠNG
TỔNG CÔNG TY THÉP VIỆT NAM
VIỆN LUYỆN KIM ĐEN






BÁO CÁO TỔNG KẾT
ĐỀ TÀI NGHIÊN CỨU KHOA HỌC & PHÁT TRIỂN CẤP BỘ


Tên đề tài:

NGHIÊN CỨU CÔNG NGHỆ SẢN XUẤT THÉP MÁC Z50CD15 DÙNG ĐỂ
CHẾ TẠO KHUÔN ÉP THỨC ĂN GIA SÚC



Cơ quan chủ quản: TỔNG CÔNG TY THÉP VIỆT NAM
Cơ quan chủ trì: VIỆN LUYỆN KIM ĐEN
Chủ nhiệm đề tài: Ths. NGUYỄN QUANG DŨNG














6826
28/4/2008


HÀ TÂY, 12/2007


2
BỘ CÔNG THƯƠNG
TỔNG CÔNG TY THÉP VIỆT NAM
VIỆN LUYỆN KIM ĐEN










BÁO CÁO TỔNG KẾT
ĐỀ TÀI NGHIÊN CỨU KHOA HỌC & PHÁT TRIỂN CẤP BỘ



Tên đề tài:

NGHIÊN CỨU CÔNG NGHỆ SẢN XUẤT THÉP MÁC Z50CD15 DÙNG ĐỂ
CHẾ TẠO KHUÔN ÉP THỨC ĂN GIA SÚC










VIỆN LUYỆN KIM ĐEN
VIỆN TRƯỞNG





Nguyễn Văn Sưa





HÀ TÂY, 12/2007


3
MỤC LỤC
Trang
MỞ ĐẦU 4
1. TỔNG QUAN 5
1.1. Giới thiệu thép không gỉ máctenxit có chứa Crôm, Molipđen và Vanadi 5
1.2. Ảnh hưởng của các nguyên tố hợp kim lên cấu trúc và tính chất của
thép không gỉ máctenxit. 6
1.3. Nhiệt luyện thép không gỉ máctenxit 11
1.4. Thép không gỉ máctenxit mác Z50CD15. 12
1.5. Lựa chọn mác thép làm khuôn ép thức ăn gia súc. 13
1.5.1. Công nghệ chế biến thức ăn gia súc. 13
1.5.2. Lựa chọn mác thép làm khuôn ép thức ăn gia súc 15
2. NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 16
2.1. Nộ
i dung nghiên cứu 16
2.2. Phương pháp nghiên cứu 16
3. KẾT QUẢ ĐẠT ĐƯỢC 17
3.1. Công nghệ sản xuất thép hợp kim mác Z50CD15 17
3.1.1. Công nghệ luyện thép 17
3.1.2. Công nghệ tinh luyện 20
3.1.3. Công nghệ đúc chi tiết 23
3.1.4. Công nghệ rèn 23
3.1.5. Công nghệ nhiệt luyện 25
3.2. Các tính chất của thép Z50CD15 27
3.2.1. Thành phần hoá học 27
3.2.2. Tính chất cơ lý 27
3.2.3. Cấu trúc pha 28
3.2.4. Tính chống gỉ của thép 32
3.3. Chế tạo sản phẩm 33

4. KẾT LUẬN VÀ KIẾN NGHỊ 36
4.1. Kết lu
ận 36
4.2. Kiến nghị 36
5. TÀI LIỆU THAM KHẢO 37
6. PHỤ LỤC 38

4
MỞ ĐẦU

Trong một đất nước, nền kinh tế bao gồm rất nhiều ngành như công nghiệp,
nông nghiệp, giao thông vận tải,… Trong số các ngành này, ngành chăn nuôi gia
súc, gia cầm cũng đóng một vai trò quan trọng. Trước đây, khi ngành cơ khí còn
kém phát triển, ngành công nghiệp ít có tác dụng hỗ trợ đến sự phát triển của
ngành chăn nuôi. Gần đây, người ta đã phát minh ra các máy chế biến thức ăn
cho ngành chăn nuôi không những
giúp giảm nhẹ lao động cho người chăn nuôi
mà còn tăng năng suất và chất lượng của ngành kinh tế này.
Trong số các thiết bị này, thiết bị chế biến thức ăn cho ngành chăn nuôi đã
được nhiều nước tiến hành nghiên cứu, chế tạo. Nguyên lý hoạt động của thiết bị
này như sau: nguyên liệu vụn rời, sau khi được hấp sấy, sẽ được máy này ép
thành viên. Thức ăn này rất tiện l
ợi cho việc chăn nuôi gia súc, gia cầm ở qui mô
công nghiệp. Nó cũng rất dễ dàng cho việc bảo quản, vận chuyển. Một trong các
bộ phận quan trọng nhất của thiết bị ép thức ăn này là khuôn ép thức ăn. Khuôn
ép này ngoài việc phải chịu được tác động ăn mòn khi tiếp xúc với các thức ăn,
còn phải chịu được sự mài mòn của việc ép thức ăn khi đi qua các lỗ nhỏ trên bề

mặt khuôn.
Thép không gỉ máctenxít đáp ứng tốt các yêu cầu này. Để góp phần phục

vụ nhu cầu trong nước, giảm thiểu nhập khẩu khi các chi tiết này bị hỏng, Viện
Luyện kim đen đã đề xuất và được Bộ Công Thương chấp thuận giao thực hiện
đề tài “Nghiên cứu công nghệ sản xuất thép Z50CD15 dùng để chế tạo khuôn ép
thức ăn gia súc”.
Bản báo cáo bao gồm các phần như sau:
-
Tổng quan.
- Nội dung và phương pháp nghiên cứu.
- Kết quả đạt được.
- Kết luận và kiến nghị.
- Tài liệu tham khảo.
- Các tài liệu liên quan đến đề tài.
Trong quá trình thực hiện đề tài, chúng tôi đã nhận được sự giúp đỡ, tạo
điều kiện của Vụ Khoa học và Công nghệ (Bộ Công Thương), Viện Nghiên cứu
thiết kế chế tạo máy nông nghiệ
p cùng các cơ quan trong cũng như ngoài Bộ.
Nhân dịp này, chúng tôi xin trân trọng cám ơn về sự giúp đỡ và hợp tác đó.

5
1. TỔNG QUAN

1.1. Giới thiệu thép không gỉ máctenxit có chứa Crôm, Molipđen và Vanadi.
Để phân biệt các loại thép với nhau, người ta có nhiều cách như theo thành
phần hoá học, công dụng của chúng, cấu trúc tồn tại,…
Đối với thép không gỉ, thông thường người ta hay dùng cách phân loại theo
dạng tồn tại cấu trúc của thép. Trong hệ thép không gỉ có những họ thép như
sau: thép austenit, dạng ferit, dạng máctenxit, dạng bề hoá tiết pha, dạng song
pha. Trong các loại thép này thì thép máctenxit có giá thành thấp trong khi
chúng lại có tính chấ
t tốt của loại thép không gỉ.

Thông thường, đối với thép không gỉ máctenxit chỉ có một nguyên tố hợp
kim là Crôm thì hàm lượng Crôm tối thiểu phải lớn hơn 11,5% còn nếu có thêm
các nguyên tố hợp kim khác như Mo, V, Ni, Ti, W,… thì hàm lượng Cr có thể
nhỏ hơn 11,5% thì thép không gỉ đó mới có cấu trúc máctenxit. Nhờ có các
nguyên tố hợp kim này mà thép có được tính chống gỉ tốt và có độ bền cơ học
cao. Ngoài ra thép máctenxit còn có nhiều ứng dụng trong các lĩnh vực như

khí, dụng cụ và các chi tiết sử dụng ở nhiệt độ cao.
Thành phần hoá học của hệ thép không gỉ máctenxit được nêu trong bảng 1.
Bảng 1: Thành phần hóa học của hệ thép không gỉ máctenxit.
TT Mác thép Thành phần hoá học của các nguyên tố (%)
AISI ASTM C Si Mn
P ≤ S ≤
Cr Ni Mo Khác
1 403 403
≤0,15 ≤0,50 ≤1,00
0,040 0,030 11,5-
13,0

2 410 410
≤0,15 ≤1,00 ≤1,00
0,040 0,030 11,5-
13,5

3 410Cb XM-30
≤0,15 ≤1,00 ≤1,00
0,040 0,030 11,5-
13,5

Nb≤0,25

4 410S -
≤0,06 ≤1,00 ≤1,00
0,040 0,030 11,5-
13,5
≤0,6

5 414 414
≤0,15 ≤1,00 ≤1,00
0,040 0,030 11,5-
13,5
1,25-
2,50

6 416 416
≤0,15 ≤1,00 ≤1,25
0,060 0,150 12,0-
14,0

Zr/Mo≤0,60

7 416 plus
X
-
≤0,15 ≤1,00
1,50-
2,50
0,060 0,150 12,0-
14,0

≤0,60


8 416Se 416Se
≤0,15 ≤1,00 ≤1,25
0,060 0,060 12,0-
14,0
Se>0,15
9 420 420
≤0,15 ≤1,00 ≤1,00
0,040 0,030 12,0-
14,0

10 420F 420F
≤0,15 ≤1,00 ≤1,25
0,060 0,150 12,0-
14,0

≤0,60

11 420F Se 420F Se 0,30-
0,40
≤1,00 ≤1,25
0,06 0,06 12,0-
14,0
Se>0,15
12 422 - 0,20-
0,45
≤0,75 ≤1,00
0,040 0,030 11,5-
13,5
0,50-

1,00
0,75-
1,25
V=0,15-0,3
W=0,75-1,25
13 431 431
≤0,20 ≤1,00 ≤1,00
0,040 0,030 15,0-
17,0
1,25-
2,50

14 440A 440A 0,60-
0,75
≤1,00 ≤1,00
0,040 0,030 16,0-
18,0

≤0,75


6
15 440B 440B 0,75-
0,95
≤1,00 ≤1,00
0,040 0,030 16,0-
18,0

≤0,75


16 440C 440C 0,95-
1,20
≤1,00 ≤1,00
0,040 0,030 16,0-
18,0

≤0,75

17 440F - 0,95-
1,20
≤1,00 ≤1,00
0,06 0,15 16,0-
18,0

Mo/Zr≤0,75
18 440F Se - 0,95-
1,20
≤1,00 ≤1,00
0,06 0,06 16,0-
18,0
Se>0,15
19 501 501
≤0,10 ≤1,00 ≤1,00
0,040 0,030 4,00-
6,00
0,40-
0,65

20 502 502
≤0,10 ≤1,00 ≤1,00

0,040 0,030 4,00-
6,00
0,40-
0,65

21 503 501A
≤0,15 ≤1,00 ≤1,00
0,040 0,030 6,00-
8,00
0,45-
0,65

22 504 501B
≤0,15 ≤1,00 ≤1,00
0,040 0,040 8,00-
10,0
0,90-
1,10

Qua bảng 1 ta thấy hệ thép không gỉ máctenxit được phân chia làm 3 nhóm
chính gồm nhóm thép chỉ có Cr khoảng 13%, nhóm có chứa Cr+Ni và nhóm có
chứa Cr cộng thêm một số nguyên tố hợp kim vi lượng như Mo, V, Ti.
1.2. Ảnh hưởng của các nguyên tố hợp kim lên cấu trúc và tính chất của
thép không gỉ máctenxit. .
Như đã biết, thành phần cơ bản của thép không gỉ máctenxit là Cr vào
khoảng 11,5-18% ngoài ra còn có thêm một số nguyên tố hợp kim khác nữa. Sau
đây ta sẽ xem xét ảnh hưởng của các nguyên tố hợ
p kim đến cấu trúc và tính
chất của các loại thép không gỉ máctenxit.
Cácbon:

Cácbon là nguyên tố mở rộng vùng γ, tức là nguyên tố tăng độ ổn định của
pha austenit. Do có khả năng mở rộng vùng dung dịch rắn γ và tạo thành pha
cácbit có độ cứng cao nên cácbon là nguyên tố tăng bền rất tốt. Khi tăng nhiệt
độ thì khả năng tăng bền của cácbon giảm đi do có sự thay đổi cấu hình của
cácbit. Khi có các nguyên tố
tạo cácbit mạnh trong hợp kim thì cácbon tập trung
chủ yếu vào những vị trí hình thành cácbit. Vì vậy, khi tăng hàm lượng cácbon
sẽ làm thay đổi sự phân bố các nguyên tố hợp kim giữa các pha dung dịch rắn và
pha cácbít. Điều này dẫn đến làm nghèo dung dịch rắn, ảnh hưởng đến tính chất
hợp kim. Cácbon cũng có ảnh hưởng xấu đến tính dẻo, giảm khả năng chống lại
sự phát triển của vết nứt và giả
m tính hàn của hợp kim. Vì vậy, hầu hết các loại
thép hợp kim đều chứa hàm lượng cácbon thấp như các loại thép không gỉ làm
việc trong các môi trường có tính ăn mòn mạnh. Tuy nhiên, đối với thép không
gỉ máctenxit được sử dụng trong ngành chế tạo cơ khí thì hàm lượng cácbon lại
cao.
Crôm:
Crôm là nguyên tố rất quan trọng có ảnh hưởng mạnh đến tính chống gỉ của
thép nhờ khả năng thụ động của Crôm. Để đả
m bảo khả năng chống gỉ của thép,
hàm lượng Cr trong thép tối thiểu phải lớn hơn 11,5% để tạo ra một lớp màng

7
ôxit bền vững trên bề mặt thép và lớp ôxit này có lực liên kết bền vững với kim
loại nền nên đã tạo cho thép có tính chống gỉ tốt.

Hình 1: Giản đồ trạng thái của hệ Fe-Cr
Hình 1 mô tả giản đồ trạng thái của Fe-Cr. Crôm là nguyên tố mở rộng
vùng α, làm tăng nhiệt độ Ac
3

và làm giảm nhiệt độ Ac
1
. Ở khoảng nhiệt độ
600-800
0
C với hàm lượng Cr vào khoảng 45% sẽ tạo thành pha σ mở rộng về
hai phía Fe và Cr. Pha σ rất cứng và dòn. Pha σ trong hệ Fe-Cr được tiết ra ở
nhiệt độ cao và cần thời gian dài. Ở nhiệt độ thấp thì không thể tiết ra pha σ.
Crôm là nguyên tố tạo cácbít khá mạnh. Vì vậy, cácbon liên kết với crôm
tạo thành cácbit đã làm giảm khả năng tiết pha σ trong thép crôm.
Crôm kết hợp với cácbon thành 3 loại cácbít : Cr
3
C, Cr
7
C
3
và Cr
23
C
6
.
Cácbít Cr
23
C
6
có mạng tinh thể lập phương diện tâm với thông số mạng 0,64A
0

với nhiệt độ nóng chảy là 1520-1550
0

C.
Cácbít Cr
7
C
3
có mạng tinh thể ba nghiêng với thông số mạng a=3,89A
0

c=41,323A
0
, nhiệt độ nóng chảy là 1630-1670
0
C. Đối với thép được hợp kim
nhiều nguyên tố thì Cr thường tạo ra cácbit phức ở dạng (Fe,Cr)
3
C, (Cr,Fe)
7
C
3

và (Cr,Fe)
4
C. Các dạng cácbit phức được thể hiện trên hình 2.

8

Hình 2: Mặt cắt đẳng nhiệt giản đồ trạng thái của hệ Fe-Cr-C ở 20
0
C
Tóm lại, trong thép không gỉ máctenxit, Crôm có những tác dụng sau:

Tạo ra khả năng chống gỉ cho thép.
Tạo ra cấu trúc máctenxit làm tăng độ bền cho thép.
Vanadi:
Vanadi ở trong thép có tác dụng làm nhỏ hạt tinh thể nên tạo cho thép có độ
bền và tính dẻo cao. Vanadi là nguyên tố tạo cacbit rất mạnh (khả năng tạo
cacbit tăng dần theo thứ tự Fe - Mn - Cr - Mo - W - Nb - V - Zr - Ti). Vanadi
cùng với C tạo ra nhiều loại cacbit như V
5
C, V
2
C, V
4
C
3
, VC và V
2
C
3
.
Ngoài các nguyên tố hợp kim trên ra, trong thép không gỉ máctenxit có thể
có thêm một số nguyên tố hợp kim khác nữa như Ni, W, Ti, Nb,… Trong số các
nguyên tố này thì Ti và Nb cũng có tác dụng tạo pha cácbit để nâng cao độ bền,
tính chịu nhiệt và tính chống gỉ.


9

Hình 3: Giản đồ trạng thái hệ Fe-V.



Hình 4: Mặt cắt đẳng nhiệt giản đồ trạng thái của hệ Fe-V-C ở 20
0
C


10
Molypđen:
Mo là nguyên tố hợp kim thu hẹp vùng γ và mở rộng vùng α trong hợp kim
với sắt. Mo làm tăng độ bền cơ học, độ bền mỏi và làm tăng tính chịu nhiệt của
thép. Mo cũng là nguyên tố tạo cácbít mạnh như Cr. Trong thép hợp kim có
chứa Mo thông thường tạo thành cácbit đơn như MoC, Mo
2
C và một số loại
cácbít phức khác.


Hình 5: Giản đồ trạng thái hệ Fe-Mo


11

Hình 6: Mặt cắt đẳng nhiệt giản đồ trạng thái của hệ Fe-Mo-C ở 20
0
C

1.3. Nhiệt luyện thép không gỉ máctenxit
Để nhận được cấu trúc máctenxit nhằm đảm bảo cơ tính cao, thép không gỉ
phải được nhiệt luyện. Công đoạn nhiệt luyện bao gồm các khâu chủ yếu sau:
austenit hoá, tôi và ram.
Austenit hoá:

Nhiệm vụ của khâu austenit hoá là tạo ra dung dịch rắn γ đồng nhất để
chuẩn bị cho khâu tôi tiếp theo. Vì vậy, nhiệt độ austenit hoá là phải cao hơn
nhiệt độ Ac
3
để các nguyên tố hợp kim có thể hoà tan hoàn toàn vào các dung
dịch rắn. Ngoài yếu tố nhiệt độ thì cần phải có thời gian giữ nhiệt đủ để các
nguyên tố hợp kim có thể khuyếch tán hoàn toàn vào dung dịch rắn. Thông
thường, các mác thép không gỉ máctenxit được austenit hoá ở nhiệt độ từ 950-
1100
0
C. Thời gian giữ nhiệt tuỳ thuộc vào thành phần hoá học của thép và kích
thước sản phẩm.
Tôi:
Tôi là công đoạn làm nguội nhanh dung dịch rắn γ từ nhiệt độ austenit hoá
xuống dưới nhiệt độ bắt đầu chuyển biến máctenxit M
s
. Tốc độ làm nguội để

12
chuyển biến austenit – máctenxit xảy ra hoàn toàn phụ thuộc vào thành phần hoá
học của mác thép. Thông thường, thép không gỉ máctenxit được làm nguội khi
tôi bằng dầu hoặc không khí.
Như vậy, để đảm bảo nhận được cấu trúc máctenxit thì khâu tôi phải thoả
mãn các điều kiện chính như sau:
Tốc độ làm nguội phải lớn hơn tốc độ làm nguội tới hạn cho phép của thép.
Tốc độ làm nguội tới hạn c
ủa từng loại thép thông thường được xác định bằng
thực nghiệm. Để điều chỉnh tốc độ làm nguội người ta thường sử dụng các môi
trường tôi khác nhau như không khí, dầu, nước và các loại dung môi khác nhau.
Đối vói thép không gỉ máctenxit thường dùng môi trường tôi là dầu hoặc

không khí nén.
Sau khi tôi, ta nhận được cấu trúc của thép là máctenxit với mạng tinh thể
lập phương thể tâm. Vì quá trình tôi là một quá trình xẩy ra rất nhanh nên không
đủ thời gian cho các nguyên tố khuyếch tán. Vì v
ậy, máctenxít là một dung dịch
rắn quá bão hoà có độ cứng cao và dòn. Bên cạnh máctenxit trong cấu trúc của
thép không gỉ máctenxít còn có thể có một lượng nhỏ σ-pherit. Đôi khi còn có
cả austenit dư khi tốc độ làm nguội không đủ lớn.
Ram:
Máctenxit nhận được sau khi tôi là một dung dịch rắn quá bão hoà, có độ
cứng cao và dòn. Vì vậy để thép có những tính chất cơ lý cao nhất theo yêu cầu
thì cần thiết phải tiến hành ram thép. Trong quá trình ram thép có xảy ra các
hiện tượng như phân huỷ austenit dư
ở khoảng nhiệt độ 220-260
0
C. Kết quả của
quá trình này là độ cứng và tính chịu mài mòn của thép tăng lên. Hiện tượng
phân huỷ dung dịch rắn xảy ra ở nhiệt độ 320-430
0
C
Kết quả của quá trình ram là cấu trúc hợp kim ở trạng thái ổn định, độ cứng
giảm đi nhưng tính dẻo tăng lên. Các tính chất khác như tính chống gỉ cũng
được tăng lên.

1.4. Thép không gỉ máctenxit mác Z50CD15.
Thép không gỉ máctenxit mác Z50CD15 thuộc về nhóm thép có chứa
14,5%Cr và được hợp kim hoá thêm các nguyên tố hợp kim Mo và V. Đây là hệ
thép đã được nghiên cứu và sản xuất ở nhiều nước trên thế giới. Các nước đã
đưa ra tiêu chuẩn hoá mác thép này. Bảng 2 đưa ra mác thép, tiêu chuẩn và
thành phần hoá học của loại thép này của các nước như Nhật Bản, Liên Xô cũ,

Đức và Pháp.
Bảng 2: Thành phần hoá học mác thép Z50CD15 và các mác tương đương
STT Mác Tiêu Thành phần hoá học của các nguyên tố (%)
thép chuẩn C Si Mn P S Cr Mo V Ni
1 4Cr13 Nga 0,36-
0.45
≤ 0,6 ≤ 0,8 ≤0,035 ≤0,03 12,0-
14,0
- - -
2 SUS420J2 Nhật 0,26- ≤ 1,0 ≤ 1,0 ≤0,04 ≤0,03 12,0- - - ≤ 0,6

13
Chế độ gia công thép không gỉ máctenxit mác Z50CD15 như sau:
- Chế độ rèn: 1100-900
0
C. Sản phẩm sau rèn được làm nguội chậm.
- Chế độ ủ: 800-860
0
C. Tốc độ làm nguội 30
0
C/giờ.
- Chế độ tôi: 1000-1050
0
C. Môi trường làm nguội là dầu.
- Chế độ ram: Ram cao tại nhiệt độ 600
0
C. Môi trường là không khí
Tính chất cơ lý tính của thép sau nhiệt luyện như sau:
σ
b

: ≥950 MPa
σ
0,2
: ≥750 MPa
δ: ≥9 %
Cấu trúc của thép không gỉ Z50CD15 sau khi nhiệt luyện là máctenxit, δ-
pherit và cácbít các loại.
Ngoài ra, thép không gỉ máctenxit còn có tính chống gỉ cao trong một số
môi trường ăn mòn.
Chính vì có các tính chất cơ lý tính cao như vậy mà thép không gỉ
máctenxit Z50CD15 được sử dụng phổ biến trong ngành công nghiệp như cơ
khí, hoá chất,…

1.5. Lựa chọn mác thép làm khuôn ép thức ăn gia súc.

1.5.1. Công nghệ chế biến thức ăn gia súc.
Từ nguyên liệu thức ăn chăn nuôi ở dạng bột để có sản phẩm dạng viên chủ
yếu phải trải qua ba công đoạn:
- Công đoạn chuẩn bị nguyên liệu
- Công đoạn tạo hình viên
- Công đoạn sử lý sau khi tạo viên
Dựa vào yêu cầu về thức ăn của từng vật nuôi khác nhau mà có các thiết bị
cụ th
ể khác nhau. Căn cứ vào công nghệ chuẩn bị nguyên liệu khác nhau và
công nghệ sử lý tạo viên, ta có thể chia thành công nghệ tạo viên cho gia súc, gia
cầm với công nghệ tạo viên thức ăn thủy sản. Sơ đồ lưu trình công nghệ chủ yếu
của nó được thể hiện trên hình 7.
0,40 14,0
3 X46Cr13
(14034)

Đức 0,42-
0,50
≤ 1,0 ≤ 1,0 ≤0,045 ≤0,03 12,50-
14,50
- - -
4 X38Cr13
(14031)
Đức 0,35-
0,42
≤ 1,0 ≤ 1,0 ≤0,045 ≤0,03 12,50-
14,50
- - -
5 Z44C14 Pháp 0,40-
0,48
≤ 1,0 ≤ 1,0 ≤0,04 0,015-
0,03
12,50-
14,50
- - -
6 Z50CD15 Pháp 0,45-
0,55

0,75
≤ 1,0 ≤0,04 ≤0,015 14,0-
15,0
0,5-
1,0
0,1-
0,2
-

7 Z50C15 Pháp 0,45-
0,55
≤0,75 ≤ 1,0 ≤0,04 ≤0,015 14,5-
15,5
- - -

14


















Hình 7: Lưu trình công nghệ chế biến thức ăn gia súc dạng viên
Trong lưu trình trên, công đoạn tạo hình viên đóng một vai trò vô cùng
quan trọng trong việc nâng cao chất lượng và công suất của dây chuyền chế
biến. Nguyên lý của công đoạn tạo hình viên như sau:
Máy ép tạo viên gồm có một trục đặc bên trong và một trục rỗng bao ở

ngoài, nghĩa là 2 trục lồng vào nhau. Trục rỗ
ng có 2 ổ bi, vòng ngoài của ổ bi
lắp vào 2 thân ổ lắp chặt vào thành máy. Một đầu trục có mặt bích để lắp khuôn
ép. Khi trục rỗng quay thì khuôn ép quay theo tốc độ quay của khuôn. Căn cứ
vào đặc tính của nguyên liệu và đường kính của viên để chọn tốc độ quay của
khuôn sao cho phù hợp. Theo kinh nghiệm thì với khuôn ép có đường kính lỗ bé
thì phải sử dụng tốc độ tiếp tuyến tương đối cao, còn với khuôn có đường kính
lỗ khuôn l
ớn thì phải sử dụng tốc độ tiếp tuyến nhỏ. Tốc độ tiếp tuyến của khuôn
có ảnh hưởng đến hiệu suất tạo viên, đến tiêu hao năng lượng và độ bền chắc
của viên. Trong phạm vi nhất định, tốc độ tiếp tuyến của khuôn cao thì năng suất
cao, năng lượng tiêu hao cao, độ cứng của viên và tỉ lệ hồ hoá của bột cũng tăng
lên. Nói chung, với đường kính lỗ khuôn là 3,2 ÷ 6,4mm thì tốc độ tiếp tuyến
của khuôn rất cao có thể đạt tới 10,2m/s; còn khi đường kính lỗ khuôn 16 ÷
19mm thì tốc độ tiếp tuyến của khuôn ép là 6,1÷ 6,6m/s.
Trong thiết bị ép thức ăn, trục đặc không quay và được lắp ổ đỡ trên một
đầu của trục đặc có một mặt bích .Trên mặt bích đó được lắp 2 hoặc 3 quả lô ép.
Quả lô ép quay trơn quanh mình nó. Khe hở giữa quả lô ép với khuôn ép
được
điều chỉnh thích hơp thì mới ép tạo thành viên. Khe hở này nói chung là từ 0,1
đến 0,3mm. Nguyên lý làm việc của buồng ép viên như trên hình 8.


Thùng chứa
Cấp liệu
Phun hơi nước
Trộn
Tạo viên Sấy, làm mát
Bẻ mảnh
Phân loại

Thành phẩm
Bao gói sản phẩm

×